Identification of a functional transcriptional factor AP-1 site in the sheep interferon tau gene that mediates a response to PMA in JEG3 cells. (73/4818)

To examine regulatory mechanisms of sheep interferon tau (oIFNtau) gene expression, potential enhancer/silencer elements of the oIFNtau gene were examined using a transient transfection system with oIFNtau gene-chloramphenicol acetyltransferase (oIFNtau-CAT) reporter constructs in human choriocarcinoma cells, JEG3. Experiments with 5'-deletion constructs revealed that the upstream regions from bases -654 to -607 and from bases -606 to -555 were essential for oIFNtau gene expression. In a heterologous transcriptional system in which the upstream regions of oIFNtau were inserted in front of simian virus 40 (SV40) promoter, the regions between bases -654 and -555 were determined as being the enhancer region required for oIFNtau-SV40-CAT transactivation. A subsequent study with the oIFNtau-CAT constructs lacking the upstream region between bases -542 and -124 revealed that, in addition to the further upstream region between bases -1000 and -654, the sequences from bases -543 to -452 seemed to act as silencer regions. The oIFNtau-CAT constructs with site-specific mutagenesis revealed that multiple enhancer elements existed between bases -654 and -555 of the oIFNtau gene. On the basis of nucleotide sequence analysis, there are numerous sites between bases -654 and -555 to which potential transcriptional factors, AP-1, GATA and GATA-related proteins, could bind. Furthermore, gel mobility-shift assays revealed that AP-1 or other nuclear factors could bind to these elements. In co-transfection studies, the expression of c-Jun plus c-Fos enhanced the transactivation of oIFNtau-CAT but the expression of GATA-1, GATA-2 or GATA-3 did not. Taken together, these results suggest that the upstream region between bases -654 and -555 could be considered as the enhancer region for oIFNtau gene transactivation.  (+info)

Phosphorylation of the myristoylated protein kinase C substrate MARCKS by the cyclin E-cyclin-dependent kinase 2 complex in vitro. (74/4818)

The myristoylated alanine-rich C-kinase substrate (MARCKS) purified from brain was recently characterized as a proline-directed kinase(s) substrate in vivo [Taniguchi, Manenti, Suzuki and Titani (1994) J. Biol. Chem. 269, 18299-18302]. Here we have investigated the phosphorylation of MARCKS by various cyclin-dependent kinases (Cdks) in vitro. We established that Cdk2, Cdk4 and, to a smaller extent, Cdk1 that have been immunoprecipitated from cellular extracts phosphorylate MARCKS. Comparison of MARCKS phosphorylation by protein kinase C (PKC) and by the purified cyclin E-Cdk2 complex suggested that two residues were phosphorylated by Cdk2 under these conditions. To identify these sites, Cdk2-phosphorylated MARCKS was digested with lysyl endoprotease and analysed by electrospray MS. Comparison with the digests obtained from the unphosphorylated protein demonstrated that two peptides, Gly12-Lys30 and Ala138-Lys152, were phosphorylated by cyclin E-Cdk2. The identity of these peptides was confirmed by automatic Edman degradation. On the basis of the consensus phosphorylation sequence described for Cdk2, and on MS/MS analysis of the Ala138-Lys152 peptide, we concluded that Ser27, one of the phosphorylation sites identified in vivo, and Thr150 were the Cdk2 targets in vitro. None of the other sites described in vivo were phosphorylated in these conditions. Interestingly, a preliminary phosphorylation of MARCKS by PKC improved the initial rate of phosphorylation by Cdk2 without modifying the number of sites concerned. In contrast, phosphorylation of MARCKS by Cdk2 did not significantly affect further phosphorylation by PKC.  (+info)

Transcription factor GCN4 for control of amino acid biosynthesis also regulates the expression of the gene for lipoamide dehydrogenase. (75/4818)

The yeast LPD1 gene encoding lipoamide dehydrogenase is subject to the general control of amino acid biosynthesis mediated by the GCN4 transcription factor. This is striking in that it demonstrates that GCN4-mediated regulation extends much farther upstream than simply to the direct pathways for amino acid and purine biosynthesis. In yeast, lipoamide dehydrogenase functions in at least three multienzyme complexes: pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase (which function in the entry of pyruvate into, and metabolism via, the citric acid cycle) and glycine decarboxylase. When wild-type cells were shifted from growth on amino acid-rich to amino acid-deficient medium, the expression of lipoamide dehydrogenase was induced approx. 2-fold. In a similar experiment no such induction was observed in isogenic gcn4 mutant cells. Northern analysis indicated that amino acid starvation affected levels of the LPD1 transcript. In the upstream region of LPD1 are three matches to the consensus for control mediated by GCN4. Directed mutagenesis of each site, and of all combinations of sites, suggests that only one site might be important for the general control response under the conditions tested. Gel-retardation analysis with GCN4 protein synthesized in vitro has indicated that GCN4 can bind in vitro to at least two of the consensus motifs.  (+info)

Familial overexpression of beta antithrombin caused by an Asn135Thr substitution. (76/4818)

We have investigated the basis of antithrombin deficiency in an asymptomatic individual (and family) with borderline levels (approximately 70% antigen and activity) of antithrombin. Direct sequencing of amplified DNA showed a mutation in codon 135, AAC to ACC, predicting a heterozygous Asn135Thr substitution. This substitution alters the predicted consensus sequence for glycosylation, Asn-X-Ser, adjacent to the heparin interaction site of antithrombin. The antithrombin isolated from plasma of the proband by heparin-Sepharose chromatography contained amounts of beta antithrombin (the very high affinity fraction) greatly increased (approximately 20% to 30% of total) above the trace levels found in normals. Expression of the residue 135 variant in both a cell-free system and COS-7 cells confirmed altered glycosylation arising as a consequence of the mutation. Wild-type and variant protein were translated and exported from COS-7 cells with apparently equal efficiency, in contrast to the reduced level of variant observed in plasma of the affected individual. This case represents a novel cause of antithrombin deficiency, removal of glycosylation concensus sequence, and highlights the potentially important role of beta antithrombin in regulating coagulation.  (+info)

Structural view of the Ran-Importin beta interaction at 2.3 A resolution. (77/4818)

Transport receptors of the Importin beta family shuttle between the nucleus and cytoplasm and mediate transport of macromolecules through nuclear pore complexes. They interact specifically with the GTP-binding protein Ran, which in turn regulates their interaction with cargo. Here, we report the three-dimensional structure of a complex between Ran bound to the nonhydrolyzable GTP analog GppNHp and a 462-residue fragment from Importin beta. The structure of Importin beta shows 10 tandem repeats resembling HEAT and Armadillo motifs. They form an irregular crescent, the concave site of which forms the interface with Ran-triphosphate. The importin-binding site of Ran does not overlap with that of the Ran-binding domain of RanBP2.  (+info)

Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. (78/4818)

The dcuC gene of Escherichia coli encodes an alternative C4-dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a preferential function of DcuC in succinate efflux during glucose fermentation. Upon overexpression in a dcuC promoter mutant (dcuC*), DcuC was able to compensate for DcuA and DcuB in fumarate-succinate exchange and fumarate uptake.  (+info)

Insertional inactivation of Treponema denticola tap1 results in a nonmotile mutant with elongated flagellar hooks. (79/4818)

The treponemal fla operon is comprised of numerous motility-related genes; however, the initial gene of this operon, tap1, has no known function. A recently developed system to generate specific mutants in Treponema denticola was utilized to determine if Tap1 was essential for motility. T. denticola tap1 and flanking DNA were identified, cloned, and sequenced, and a suicide plasmid that contained tap1 interrupted with an erythromycin resistance cassette (ermF and ermAM) was constructed. Because of potential polar effects from this cassette, a second plasmid that contained tap1 interrupted with a modified erythromycin resistance cassette that lacked the putative ermF transcription terminator was constructed. Electroporation-mediated allelic exchange incorporated the interrupted tap1 genes into the T. denticola chromosome, creating Tap1-deficient mutants. Reverse transcriptase PCR revealed that the erythromycin resistance cassette within tap1 did not terminate fla operon transcription in either mutant. Moreover, the phenotypes of the two mutants were indistinguishable. These mutants lacked motion in liquid culture, were unable to spread on agar plates, and lacked flagellar filaments as determined by electron microscopy. Immunoblots revealed a marked reduction in detectable FlaB flagellar filament protein compared to that of wild type; however, flaB RNA was easily detectable, and transcription levels did not appear to be altered. The basis for the lack of filament protein expression is unknown. Immunoblotting also showed that the flagellar hook protein (FlgE) was synthesized in the Tap1-deficient mutant; however, electron microscopy revealed that the mutant possessed unusual elongated hooks of variable lengths. We propose that treponemal Tap1 is analogous to FliK, which is involved in monitoring the flagellar hook length of Salmonella typhimurium.  (+info)

Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D. (80/4818)

The regulator of sigma D (Rsd) was identified as an RNA polymerase sigma70-associated protein in stationary-phase Escherichia coli with the inhibitory activity of sigma70-dependent transcription in vitro (M. Jishage and A. Ishihama, Proc. Natl. Acad. Sci. USA 95:4953-4958, 1998). Primer extension analysis of rsd mRNA indicated the presence of two promoters, sigmaS-dependent P1 and sigma70-dependent P2 with the gearbox sequence. To get insight into the in vivo role of Rsd, the expression of a reporter gene fused to either the sigma70- or sigmaS-dependent promoter was analyzed in the absence of Rsd or the presence of overexpressed Rsd. In the rsd null mutant, the sigma70- and sigmaS-dependent gene expression was increased or decreased, respectively. On the other hand, the sigma70- or sigmaS-dependent transcription was reduced or enhanced, respectively, after overexpression of Rsd. The repression of the sigmaS-dependent transcription in the rsd mutant is overcome by increased production of the sigmaS subunit. Together these observations support the prediction that Rsd is involved in replacement of the RNA polymerase sigma subunit from sigma70 to sigmaS during the transition from exponential growth to the stationary phase.  (+info)