(1/4818) Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis.

The Met tyrosine kinase - the HGF receptor - induces cell transformation and metastasis when constitutively activated. Met signaling is mediated by phosphorylation of two carboxy-terminal tyrosines which act as docking sites for a number of SH2-containing molecules. These include Grb2 and p85 which couple the receptor, respectively, with Ras and PI 3-kinase. We previously showed that a Met mutant designed to obtain preferential coupling with Grb2 (Met2xGrb2) is permissive for motility, increases transformation, but - surprisingly - is impaired in causing invasion and metastasis. In this work we used Met mutants optimized for binding either p85 alone (Met2xPI3K) or p85 and Grb2 (MetPI3K/Grb2) to evaluate the relative importance of Ras and PI 3-kinase as downstream effectors of Met. Met2xPI3K was competent in eliciting motility, but not transformation, invasion, or metastasis. Conversely, MetP13K/Grb2 induced motility, transformation, invasion and metastasis as efficiently as wild type Met. Furthermore, the expression of constitutively active PI 3-kinase in cells transformed by the Met2xGrb2 mutant, fully rescued their ability to invade and metastasize. These data point to a central role for PI 3-kinase in Met-mediated invasiveness, and indicate that simultaneous activation of Ras and PI 3-kinase is required to unleash the Met metastatic potential.  (+info)

(2/4818) ATF-2-binding regulatory element is responsible for the Ly49A expression in murine T lymphoid line, EL-4.

To understand the mechanism of Ly49A-expression and its significance in T-cell differentiation, we analyzed the 5'-flanking region of the Ly49A gene in a search for the Ly49A-regulatory element. Since very few known regulatory elements have been found in this region, presumably a novel regulatory sequence(s) could exist. Accordingly, we defined the 13-bp regulatory element, 5'-ATGACGAGGAGGA-3', restricted to Ly49A-expression in EL-4 cells in comparison with two other representative cell lines tested. This element, designated as EL13, proved to be previously undiscovered by homology search and is highly homologous with several virus DNAs. Using EL13 as a probe we have cloned a cDNA encoding a binding protein to EL13. Its deduced nucleotide sequence revealed that EL13-binding protein is almost identical with rat ATF-2. Although ATF-2 is known to bind to cyclic AMP responsive element (CRE), EL13 shares five out of eight nucleotides with this consensus sequence. Our results suggested that ATF-2 may play an important role via binding to EL13 for the expression of Ly49A. These data will provide useful information for understanding T-cell and NK-cell differentiation in murine immune system.  (+info)

(3/4818) Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells.

The expression of a luciferase reporter gene under the control of the human glucose 6-phosphatase gene promoter was stimulated by both dexamethasone and dibutyryl cAMP in H4IIE hepatoma cells. A cis-active element located between nucleotides -161 and -152 in the glucose 6-phosphatase gene promoter was identified and found to be necessary for both basal reporter-gene expression and induction of expression by both dibutyryl cAMP and dexamethasone. Nucleotides -161 to -152 were functionally replaced by the consensus sequence for a cAMP response element. An antibody against the cAMP response element-binding protein caused a supershift in gel-electrophoretic-mobility-shift assays using an oligonucleotide probe representing the glucose 6-phosphatase gene promoter from nucleotides -161 to -152. These results strongly indicate that in H4IIE cells the glucose 6-phosphatase gene-promoter sequence from -161 to -152 is a cAMP response element which is important for the regulation of transcription of the glucose 6-phosphatase gene by both cAMP and glucocorticoids.  (+info)

(4/4818) Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of beta-alanine auxotrophic Tn5 mutants and cloning of the panD gene region.

The postulated posttranslational modification of the polyhydroxybutyrate (PHA) synthase from Ralstonia eutropha by 4-phosphopantetheine was investigated. Four beta-alanine auxotrophic Tn5-induced mutants of R. eutropha HF39 were isolated, and two insertions were mapped in an open reading frame with strong similarity to the panD gene from Escherichia coli, encoding L-aspartate-1-decarboxylase (EC, whereas two other insertions were mapped in an open reading frame (ORF) with strong similarity to the NAD(P)+ transhydrogenase (EC alpha 1 subunit, encoded by the pntAA gene from Escherichia coli. The panD gene was cloned by complementation of the panD mutant of R. eutropha Q20. DNA sequencing of the panD gene region (3,312 bp) revealed an ORF of 365 bp, encoding a protein with 63 and 67% amino acid sequence similarity to PanD from E. coli and Bacillus subtilis, respectively. Subcloning of only this ORF into vectors pBBR1MCS-3 and pBluescript KS- led to complementation of the panD mutants of R. eutropha and E. coli SJ16, respectively. panD-encoded L-aspartate-1-decarboxylase was further confirmed by an enzymatic assay. Upstream of panD, an ORF with strong similarity to pntAA from E. coli, encoding NAD(P)+ transhydrogenase subunit alpha 1 was found; downstream of panD, two ORFs with strong similarity to pntAB and pntB, encoding subunits alpha 2 and beta of the NAD(P)+ transhydrogenase, respectively, were identified. Thus, a hitherto undetermined organization of pan and pnt genes was found in R. eutropha. Labeling experiments using one of the R. eutropha panD mutants and [2-14C]beta-alanine provided no evidence that R. eutropha PHA synthase is covalently modified by posttranslational attachment of 4-phosphopantetheine, nor did the E. coli panD mutant exhibit detectable labeling of functional PHA synthase from R. eutropha.  (+info)

(5/4818) An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter.

Regulation of gene expression in the domain Archaea, and specifically hyperthermophiles, has been poorly investigated so far. Biochemical experiments and genome sequencing have shown that, despite the prokaryotic cell and genome organization, basal transcriptional elements of members of the domain Archaea (i.e., TATA box-like sequences, RNA polymerase, and transcription factors TBP, TFIIB, and TFIIS) are of the eukaryotic type. However, open reading frames potentially coding for bacterium-type transcription regulation factors have been recognized in different archaeal strains. This finding raises the question of how bacterial and eukaryotic elements interact in regulating gene expression in Archaea. We have identified a gene coding for a bacterium-type transcription factor in the hyperthermophilic archaeon Sulfolobus solfataricus. The protein, named Lrs14, contains a potential helix-turn-helix motif and is related to the Lrp-AsnC family of regulators of gene expression in the class Bacteria. We show that Lrs14, expressed in Escherichia coli, is a highly thermostable DNA-binding protein. Bandshift and DNase I footprint analyses show that Lrs14 specifically binds to multiple sequences in its own promoter and that the region of binding overlaps the TATA box, suggesting that, like the E. coli Lrp, Lrs14 is autoregulated. We also show that the lrs14 transcript is accumulated in the late growth stages of S. solfataricus.  (+info)

(6/4818) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199.

The complete 184,457-bp sequence of the aromatic catabolic plasmid, pNL1, from Sphingomonas aromaticivorans F199 has been determined. A total of 186 open reading frames (ORFs) are predicted to encode proteins, of which 79 are likely directly associated with catabolism or transport of aromatic compounds. Genes that encode enzymes associated with the degradation of biphenyl, naphthalene, m-xylene, and p-cresol are predicted to be distributed among 15 gene clusters. The unusual coclustering of genes associated with different pathways appears to have evolved in response to similarities in biochemical mechanisms required for the degradation of intermediates in different pathways. A putative efflux pump and several hypothetical membrane-associated proteins were identified and predicted to be involved in the transport of aromatic compounds and/or intermediates in catabolism across the cell wall. Several genes associated with integration and recombination, including two group II intron-associated maturases, were identified in the replication region, suggesting that pNL1 is able to undergo integration and excision events with the chromosome and/or other portions of the plasmid. Conjugative transfer of pNL1 to another Sphingomonas sp. was demonstrated, and genes associated with this function were found in two large clusters. Approximately one-third of the ORFs (59 of them) have no obvious homology to known genes.  (+info)

(7/4818) A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins.

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of beta-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.  (+info)

(8/4818) Functional analysis of the promoter of the yeast SNQ2 gene encoding a multidrug resistance transporter that confers the resistance to 4-nitroquinoline N-oxide.

The yeast gene SNQ2, which encodes a multidrug resistance ABC superfamily protein, is required for resistance to the mutagen 4-nitroquinoline N-oxide (4-NQO). The expression of the SNQ2 gene is under the control of a regulatory network that involves the transcription factor Yrr1p, as well as Pdr1p/Pdr3p (Cui et al., Mol. Microbiol., 29, 1307-1315 (1998)). By 5'-deletion analysis of the promoter by using SNQ2-lacZ fusion constructs, four regions: -745 to -639 (region I), -639 to -578 (region II), -548 to -533 (region III) and -533 to -485 (region IV) were found to be important for SNQ2 expression. Genetic analysis suggested that the site in region IV was responsible for the Yrr1p-mediated SNQ2 expression. A consensus motif known for the binding of Pdr1p/Pdr3p (PDRE) was not found in region IV.  (+info)