Destruction of hyaline cartilage in the sigmoid notch of the human ulna. (1/1596)

In an ulna from an adolescent a fossa nudata divided the articular surface of the sigmoid notch into olecranon and coronoid areas. In the floor of the fossa a layer of loose avascular pannus covered a thin layer of articular cartilage. The pannus appeared to have been formed by removal of chondroitin from the cartilage, freeing the cells and unmasking the fibres. Probably the change followed loss of contact between the articular cartilages of the sigmoid notch and trochlea during postnatal growth.  (+info)

Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. (2/1596)

We investigated changes in structures and mechanical properties of the intramuscular connective tissue during the fattening of Japanese Black steers, using the cell maceration method for scanning electron microscopy. During the early fattening period, from 9 to 20 mo of age, collagen fibrils of the endomysium in longissimus muscle associated more closely with each other, and collagen fibers in the perimysium increased in thickness and their wavy pattern became more regular. These changes were closely related to the increase in mechanical strength of the intramuscular connective tissue and resulted in a toughening of the beef during the period. The shear force value of longissimus muscle decreased after 20 mo of age, concomitantly with the rapid increase in the crude fat content. Scanning electron micrographs of the longissimus muscle dissected from 32-mo-old steers clearly showed that the adipose tissues were formed between muscle fiber bundles, that the honeycomb structure of endomysia was partially broken, and that the perimysium separated into thinner collagen fibers. In semitendinosus muscle, in which the crude fat content was lower (P<.05) than that in longissimus muscle, the structure of the intramuscular connective tissue remained rigid at 32 mo of age. The shear force value of the muscle increased even in the late fattening period, from 20 to 32 mo of age. Thus, the development of adipose tissues in longissimus muscle appears to disorganize the structure of the intramuscular connective tissue and contributes to tenderization of highly marbled beef from Japanese Black cattle during the late fattening period.  (+info)

Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs. (3/1596)

We investigated changes in structures and properties of the endomysium and perimysium during development of semitendinosus muscle in relation to the increase in toughness of pork using samples from neonates to 55-mo-old pigs. The shear force value of pork increased linearly until 6 mo of age, and the rate of increase slowed down thereafter. The secondary perimysium thickened owing to an increase in the number and thickness of perimysial sheets consisting of collagen fibers, which became thicker and wavy with the growth of the pigs. This increase in thickness of the secondary perimysium was correlated significantly with the increase in the shear force value (r = .98). The endomysial sheaths became thicker and denser in the muscle of 6-mo-old pigs. Maturation of the endomysium was accompanied by hypertrophy of muscle fibers. The amount of heat-soluble collagen decreased almost linearly, indicating that nonreducible cross-links between collagen molecules were formed throughout chronological aging. We conclude that thickening of the perimysium is closely related to an increase in the toughness of pork during growth of pigs.  (+info)

Interaction of Borrelia burgdorferi with peripheral blood fibrocytes, antigen-presenting cells with the potential for connective tissue targeting. (4/1596)

BACKGROUND: Borrelia Burgdorferi has a predilection for collagenous tissue and can interact with fibronectin and cellular collagens. While the molecular mechanisms of how B. burgdorferi targets connective tissues and causes arthritis are not understood, the spirochetes can bind to a number of different cell types, including fibroblasts. A novel circulating fibroblast-like cell called the peripheral blood fibrocyte has recently been described. Fibrocytes express collagen types I and III as well as fibronectin. Besides playing a role in wound healing, fibrocytes have the potential to target to connective tissue and the functional capacity to recruit, activate, and present antigen to CD4(+) T cells. MATERIALS AND METHODS: Rhesus monkey fibrocytes were isolated and characterized by flow cytometry. B. burgdorferi were incubated with human or monkey fibrocyte cultures in vitro and the cellular interactions analyzed by light and electron microscopy. The two strains of B. burgdorferi studied included JD1, which is highly pathogenic for monkeys, and M297, which lacks the cell surface OspA and OspB proteins. RESULTS: In this study, we demonstrate that B. burgdorferi binds to both human and monkey (rhesus) fibrocytes in vitro. This process does not require OspA or OspB. In addition, the spirochetes are not phagocytosed but are taken into deep recesses of the cell membrane, a process that may protect them from the immune system. CONCLUSIONS: This interaction between B. burgdorferi and peripheral blood fibrocytes provides a potential explanation for the targeting of spirochetes to joint connective tissue and may contribute to the inflammatory process in Lyme arthritis.  (+info)

Connective tissues: matrix composition and its relevance to physical therapy. (5/1596)

In the last 2 decades, the understanding of CT structure and function has increased enormously. It is now clear that the cells of the various CTs synthesize a variety of ECM components that act not only to underpin the specific biomechanical and functional properties of tissues, but also to regulate a variety of cellular functions. Importantly for the physical therapist, and as discussed above, CTs are responsive to changes in the mechanical environment, both naturally occurring and applied. The relative proportions of collagens and PGs largely determine the mechanical properties of CTs. The relationship between the fibril-forming collagens and PG concentration is reciprocal. Connective tissues designed to resist high tensile forces are high in collagen and low in total PG content (mostly dermatan sulphate PGs), whereas CTs subjected to compressive forces have a greater PG content (mostly chondroitin sulphate PGs). Hyaluronan has multiple roles and not only provides tissue hydration and facilitation of gliding and sliding movements but also forms an integral component of large PG aggregates in pressure-resisting tissues. The smaller glycoproteins help to stabilize and link collagens and PGs to the cell surface. The result is a complex interacting network of matrix molecules, which determines both the mechanical properties and the metabolic responses of tissues. Patients with CT problems affecting movement are frequently examined and treated by physical therapists. A knowledge of the CT matrix composition and its relationship to the biomechanical properties of these tissues, particularly the predictable responses to changing mechanical forces, offers an opportunity to provide a rational basis for treatments. The complexity of the interplay among the components, however, requires that further research be undertaken to determine more precisely the effects of treatments on the structure and function of CTs.  (+info)

Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. (6/1596)

Type II collagen is the main structural component of hyaline cartilages where it forms networks of thin fibrils that differ in morphology from the much thicker fibrils of type I collagen. We studied here in vitro the formation of fibrils of pepsin-treated recombinant human type II collagen produced in insect cells. Two kinds of type II collagen preparation were used: low hydroxylysine collagen having 2.0 hydroxylysine residues/1,000 amino acids, including 1.3 glycosylated hydroxylysines; and high hydroxylysine collagen having 19 hydroxylysines/1,000 amino acids, including 8.9 glycosylated hydroxylysines. A marked difference in fibril formation was found between these two kinds of collagen preparation, in that the maximal turbidity of the former was reached within 5 min under the standard assay conditions, whereas the absorbance of the latter increased until about 600 min. The critical concentration with the latter was about 10-fold, and the absorbance/microgram collagen incorporated into the fibrils was about one-sixth. The morphology of the fibrils was also different, in that the high hydroxylysine collagen formed thin fibrils with essentially no interfibril interaction or aggregation, whereas the low hydroxylysine collagen formed thick fibrils on a background of thin ones. The data thus indicate that regulation of the extents of lysine hydroxylation and hydroxylysine glycosylation may play a major role in the regulation of collagen fibril formation and the morphology of the fibrils.  (+info)

Altered connective tissue in children with congenital dislocation of the hip. (7/1596)

The umbilical cord was employed as a source of collagen in 10 children with congenital dislocation of hip. The amount of collagen and its solubility were measured in slices of the cords and in the umbilical veins and compared with the values in normal subjects. Both the amount of collagen and its solubility were decreased in children with congenital dislocation of the hip.  (+info)

Insulin regulation of amino acid transport in mesenchymal cells from avian and mammalian tissues. (8/1596)

Insulin regulation of amino acid transport across the cell membrane was studied in a variety of mesenchymal cell directly isolated from avian and mammalian tissues or collected from confluent cultures. Transport activity of the principal systems of mediation in the presence and absence of insulin was evaluated by measuring the uptake of representative amino acids under conditions approaching initial entry rates. Insulin enhanced the transport rate of substrate amino acids from the A system(alpha-aminoisobutyric acid, L-proline, glycine, L-alanine and L-serine) in fibroblasts and osteoblasts from chick-embryo tissues, in mesenchymal cells (fibroblasts and smooth muscle cells) from immature rat uterus, in thymic lymphocytes from young rats and in chick-embryo fibroblasts from confluent secondary cultures. In these tissues, the uptake of amino acid substrates of transport systems L and Ly+ (L-leucine, L-phenylalanine, L-lysine) was not affected by the presence of the hormone. No insulin control of amino acid transport was detected in chick-embryo chondroblasts and rat peritoneal macrophages. These observations identify the occurrence of hormonal regulatory patterns of amino acid transport for different mesenchymal cells types and indicate that these properties emerge early during cell differentiation.  (+info)