Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils. (65/616)

The giant muscle protein titin contains a unique sequence, the PEVK domain, the elastic properties of which contribute to the mechanical behavior of relaxed cardiomyocytes. Here, human N2-B-cardiac PEVK was expressed in Escherichia coli and tested-along with recombinant cardiac titin constructs containing immunoglobulin-like or fibronectin-like domains-for a possible interaction with actin filaments. In the actomyosin in vitro motility assay, only the PEVK construct inhibited actin filament sliding over myosin. The slowdown occurred in a concentration-dependent manner and was accompanied by an increase in the number of stationary actin filaments. High [Ca(2+)] reversed the PEVK effect. PEVK concentrations >/=10 microgram/mL caused actin bundling. Actin-PEVK association was found also in actin fluorescence binding assays without myosin at physiological ionic strength. In cosedimentation assays, PEVK-titin interacted weakly with actin at 0 degrees C, but more strongly at 30 degrees C, suggesting involvement of hydrophobic interactions. To probe the interaction in a more physiological environment, nonactivated cardiac myofibrils were stretched quickly, and force was measured during the subsequent hold period. The observed force decline could be fit with a three-order exponential-decay function, which revealed an initial rapid-decay component (time constant, 4 to 5 ms) making up 30% to 50% of the whole decay amplitude. The rapid, viscous decay component, but not the slower decay components, decreased greatly and immediately on actin extraction with Ca(2+)-independent gelsolin fragment, both at physiological sarcomere lengths and beyond actin-myosin overlap. Steady-state passive force dropped only after longer exposure to gelsolin. We conclude that interaction between PEVK-titin and actin occurs in the sarcomere and may cause viscous drag during diastolic stretch of cardiac myofibrils. The interaction could also oppose shortening during contraction.  (+info)

Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. (66/616)

Cell surface exposure of phosphatidylserine (PS) is shown to be part of normal physiology of skeletal muscle development and to mediate myotube formation. A transient exposure of PS was observed on mouse embryonic myotubes at E13, at a stage of development when primary myotubes are formed. The study of this process in cell cultures of differentiating C2C12 and H9C2 myoblasts also reveals a transient expression of PS at the cell surface. This exposure of PS locates mainly at cell-cell contact areas and takes place at a stage when the structural organization of the sarcomeric protein titin is initiated, prior to actual fusion of individual myoblast into multinucleated myotubes. Myotube formation in vitro can be inhibited by the PS binding protein annexin V, in contrast to its mutant M1234, which lacks the ability to bind to PS. Although apoptotic myoblasts also expose PS, differentiating muscle cells show neither loss of mitochondrial membrane potential nor detectable levels of active caspase-3 protein. Moreover, myotube formation and exposure of PS cannot be blocked by the caspase inhibitor zVAD(OMe)-fmk. Our findings indicate that different mechanisms regulate PS exposure during apoptosis and muscle cell differentiation, and that surface exposed PS plays a crucial role in the process of myotube formation.  (+info)

Drosophila rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. (67/616)

The fusion of myoblasts leading to the formation of myotubes is an integral part of skeletal myogenesis in many organisms. In Drosophila, specialized founder myoblasts initiate fusion through expression of the receptor-like attractant Dumbfounded (Duf), which brings them into close contact with other myoblasts. Here, we identify Rols7, a gene expressed in founders, as an essential component for fusion during myotube formation. During fusion, Rols7 localizes in a Duf-dependent manner at membrane sites that contact other myoblasts. These sites are also enriched with D-Titin, which functions to maintain myotube structure and morphology. When Rols7 is absent or its localization is perturbed, the enrichment of D-Titin fails to occur. Rols7 integrates the initial event of myoblast attraction with the downstream event of myotube structural organization by linking Duf to D-Titin.  (+info)

The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. (68/616)

Titin is a giant vertebrate striated muscle protein with critical importance for myofibril elasticity and structural integrity. We show here that the complete sequence of the human titin gene contains 363 exons, which together code for 38 138 residues (4200 kDa). In its central I-band region, 47 novel PEVK exons were found, which contribute to titin's extensible spring properties. Additionally, 3 unique I-band titin exons were identified (named novex-1 to -3). Novex-3 functions as an alternative titin C-terminus. The novex-3 titin isoform is approximately 700 kDa in size and spans from Z1-Z2 (titin's N-terminus) to novex-3 (C-terminal exon). Novex-3 titin specifically interacts with obscurin, a 721-kDa myofibrillar protein composed of 57 Ig/FN3 domains, followed by one IQ, SH3, DH, and a PH domain at its C-terminus. The obscurin domains Ig48/Ig49 bind to novex-3 titin and target to the Z-line region when expressed as a GFP fusion protein in live cardiac myocytes. Immunoelectron microscopy detected the C-terminal Ig48/Ig49 obscurin epitope near the Z-line edge. The distance from the Z-line varied with sarcomere length, suggesting that the novex-3 titin/obscurin complex forms an elastic Z-disc to I-band linking system. This system could link together calcium-dependent, SH3-, and GTPase-regulated signaling pathways in close proximity to the Z-disc, a structure increasingly implicated in the restructuring of sarcomeres during cardiomyopathies.  (+info)

Global configuration of single titin molecules observed through chain-associated rhodamine dimers. (69/616)

The global configuration of individual, surface-adsorbed molecules of the giant muscle protein titin, labeled with rhodamine conjugates, was followed with confocal microscopy. Fluorescence-emission intensity was reduced because of self-quenching caused by the close spacing between rhodamine dye molecules that formed dimers. In the presence of chemical denaturants, fluorescence intensity increased, reversibly, up to 5-fold in a fast reaction; the kinetics were followed at the single-molecule level. We show that dimers formed in a concentrated rhodamine solution dissociate when exposed to chemical denaturants. Furthermore, titin denaturation, followed by means of tryptophan fluorescence, is dominated by a slow reaction. Therefore, the rapid fluorescence change of the single molecules reflects the direct action of the denaturants on rhodamine dimers rather than the unfolding/refolding of the protein. Upon acidic denaturation, which we have shown not to dissociate rhodamine dimers, fluorescence intensity change was minimal, suggesting that dimers persist because the unfolded molecule has contracted into a small volume. The highly contractile nature of the acid-unfolded protein molecule derives from a significant increase in chain flexibility. We discuss the potential implications this finding could have for the passive mechanical behavior of striated muscle.  (+info)

Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro. (70/616)

Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.  (+info)

Molecular mechanics of cardiac titin's PEVK and N2B spring elements. (71/616)

Titin is a giant elastic protein that is responsible for the majority of passive force generated by the myocardium. Titin's force is derived from its extensible I-band region, which, in the cardiac isoform, comprises three main extensible elements: tandem Ig segments, the PEVK domain, and the N2B unique sequence (N2B-Us). Using atomic force microscopy, we characterized the single molecule force-extension curves of the PEVK and N2B-Us spring elements, which together are responsible for physiological levels of passive force in moderately to highly stretched myocardium. Stretch-release force-extension curves of both the PEVK domain and N2B-Us displayed little hysteresis: the stretch and release data nearly overlapped. The force-extension curves closely followed worm-like chain behavior. Histograms of persistence length (measure of chain bending rigidity) indicated that the single molecule persistence lengths are approximately 1.4 and approximately 0.65 nm for the PEVK domain and N2B-Us, respectively. Using these mechanical characteristics and those determined earlier for the tandem Ig segment (assuming folded Ig domains), we modeled the cardiac titin extensible region in the sarcomere and calculated the extension of the various spring elements and the forces generated by titin, both as a function of sarcomere length. In the physiological sarcomere length range, predicted values and those obtained experimentally were indistinguishable.  (+info)

Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. (72/616)

Rab3A, a member of the Rab3 small G protein family, regulates Ca(2+)-dependent exocytosis of neurotransmitter. The cyclical activation and inactivation of Rab3A are essential for the Rab3A action in exocytosis. GDP-Rab3A is activated to GTP-Rab3A by Rab3 GDP/GTP exchange protein (Rab3 GEP), and GTP-Rab3A is inactivated to GDP-Rab3A by Rab3 GTPase-activating protein (Rab3 GAP). It remains unknown how or in which step of the multiple exocytosis steps these regulators are activated and inactivated. We isolated here a novel protein that was co-immunoprecipitated with Rab3 GEP and GAP by their respective antibodies from the crude synaptic vesicle fraction of rat brain. The protein, named rabconnectin-3, bound both Rab3 GEP and GAP. The cDNA of rabconnectin-3 was cloned from a human cDNA library and its primary structure was determined. Human rabconnectin-3 consisted of 3,036 amino acids and showed a calculated M(r) of 339,753. It had 12 WD domains. Tissue and subcellular distribution analyses in rat indicated that rabconnectin-3 was abundantly expressed in the brain where it was enriched in the synaptic vesicle fraction. Immunofluorescence and immunoelectron microscopy revealed that rabconnectin-3 was concentrated on synaptic vesicles at synapses. These results indicate that rabconnectin-3 serves as a scaffold molecule for both Rab3 GEP and GAP on synaptic vesicles.  (+info)