R-factor inheritance and plasmid content in mucoid Pseudomonas aeruginosa. (25/3280)

Eighteen strains of alginate-producing mucoid Pseudomonas aeruginosa were evaluated with respect to plasmid content and the ability to maintain well-characterized R plasmids. The spontaneous loss of alginate production in these strains varied from 0.01 to 0.7% and was not significantly increased by plasmid curing regimens. Examination of cleared lysates of these strains and their isogenic nonmucoid derivatives by agarose gel electrophoresis failed to reveal plasmid DNA. R-plasmid (P-incompatibility-group) transfer to mucoid P. aeruginosa was unaffected by the presence of the alginate capsule. Maintenance and expression of such plasmids in the mucoid strains were confirmed by agarose gel electrophoresis and by verification of plasmid-linked drug resistance and pilus-specific bacteriophage sensitivity. These studies demonstrate that alginate production does not appear to be plasmid linked and that mucoid P. aeruginosa are capable of receiving and donating certain drug resistance plasmids. Since some of the plasmids used here have been shown to mobilize chromosomal DNA, strains constructed in this study should afford the means for exploring the genetic basis of the mucoid phenotype.  (+info)

Specific DNA recognition by F Factor TraY involves beta-sheet residues. (26/3280)

The F Factor TraY protein is a sequence-specific DNA-binding protein required for efficient conjugal transfer. Genetic and biochemical studies indicate that TraY has two functional roles in conjugation. TraY binds to the PY promoter to up-regulate transcription of tra genes. TraY also binds to the plasmid origin of transfer (oriT), serving as an accessory protein in the nicking of F Factor in preparation for transfer. TraY is thought to belong to the ribbon-helix-helix family of transcription factors. These proteins contact DNA using residues of an antiparallel beta-sheet. We engineered and characterized six TraY mutants each having a single potential beta-sheet DNA contact residue replaced with Ala. Most TraY mutants had significantly reduced affinity for the TraY oriT binding site while possessing near wild-type stability and nonspecific DNA recognition. These results indicate that TraY beta-sheet residues participate in DNA recognition, and support inclusion of TraY in the ribbon-helix-helix family.  (+info)

Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides. (27/3280)

The biosynthesis of methylamine dehydrogenase (MADH) from Paracoccus denitrificans requires four genes in addition to those that encode the two structural protein subunits, mauB and mauA. The accessory gene products appear to be required for proper export of the protein to the periplasm, synthesis of the tryptophan tryptophylquinone (TTQ) prosthetic group, and formation of several structural disulfide bonds. To accomplish the heterologous expression of correctly assembled MADH, eight genes from the methylamine utilization gene cluster of P. denitrificans, mauFBEDACJG, were placed under the regulatory control of the coxII promoter of Rhodobacter sphaeroides and introduced into R. sphaeroides by using a broad-host-range vector. The heterologous expression of MADH was constitutive with respect to carbon source, whereas the native mau promoter allows induction only when cells are grown in the presence of methylamine as a sole carbon source and is repressed by other carbon sources. The recombinant MADH was localized exclusively in the periplasm, and its physical, spectroscopic, kinetic and redox properties were indistinguishable from those of the enzyme isolated from P. denitrificans. These results indicate that mauM and mauN are not required for MADH or TTQ biosynthesis and that mauFBEDACJG are sufficient for TTQ biosynthesis, since R. sphaeroides cannot synthesize TTQ. A similar construct introduced into Escherichia coli did not produce detectable MADH activity or accumulation of the mauB and mauA gene products but did lead to synthesizes of amicyanin, the mauC gene product. This finding suggests that active recombinant MADH is not expressed in E. coli because one of the accessory gene products is not functionally expressed. This study illustrates the potential utility of R. sphaeroides and the coxII promoter for heterologous expression of complex enzymes such as MADH which cannot be expressed in E. coli. These results also provide the foundation for future studies on the molecular mechanisms of MADH and TTQ biosynthesis, as well as a system for performing site-directed mutagenesis of the MADH gene and other mau genes.  (+info)

Comparative analysis of Legionella pneumophila and Legionella micdadei virulence traits. (28/3280)

While the majority of Legionnaire's disease has been attributed to Legionella pneumophila, Legionella micdadei can cause a similar infection in immunocompromised people. Consistent with its epidemiological profile, the growth of L. micdadei in cultured macrophages is less robust than that of L. pneumophila. To identify those features of the Legionella spp. which are correlated to efficient growth in macrophages, two approaches were taken. First, a phenotypic analysis compared four clinical isolates of L. micdadei to one well-characterized strain of L. pneumophila. Seven traits previously correlated with the virulence of L. pneumophila were evaluated: infection and replication in cultured macrophages, evasion of phagosome-lysosome fusion, contact-dependent cytotoxicity, sodium sensitivity, osmotic resistance, and conjugal DNA transfer. By nearly every measure, L. micdadei appeared less virulent than L. pneumophila. The surprising exception was L. micdadei 31B, which evaded lysosomes and replicated in macrophages as efficiently as L. pneumophila, despite lacking both contact-dependent cytopathicity and regulated sodium sensitivity. Second, in an attempt to identify virulence factors genetically, an L. pneumophila genomic library was screened for clones which conferred robust intracellular growth on L. micdadei. No such loci were isolated, consistent with the multiple phenotypic differences observed for the two species. Apparently, L. pneumophila and L. micdadei use distinct strategies to colonize alveolar macrophages, causing Legionnaire's disease.  (+info)

A Zymomonas mobilis mutant with delayed growth on high glucose concentrations. (29/3280)

Exponentially growing cells of Zymomonas mobilis normally exhibit a lag period of up to 3 h when transferred from 0.11 M (2%) to 0.55 M (10%) glucose liquid medium. A mutant of Z. mobilis (CU1Rif2), fortuitously isolated, showed more than a 20-h lag period when grown under the same conditions, whereas on 0.55 M glucose solid medium, it failed to grow. The growth of CU1Rif2 on elevated concentrations of other fermentable (0.55 M sucrose or fructose) or nonfermentable (0.11 M glucose plus 0.44 M maltose or xylose) sugars appeared to be normal. Surprisingly, CU1Rif2 cells grew without any delay on 0.55 M glucose on which wild-type cells had been incubated for 3 h and removed at the beginning of their exponential phase. This apparent preconditioning was not observed with medium obtained from wild-type cells grown on 0.11 M glucose and supplemented to 0.55 M after removal of the wild-type cells. Undelayed growth of CU1Rif2 on 0.55 M glucose previously conditioned by the wild type was impaired by heating or protease treatment. It is suggested that in Z. mobilis, a diffusible proteinaceous heat-labile factor, transitionally not present in 0.55 M glucose CU1Rif2 cultures, triggers growth on 0.55 M glucose. Biochemical analysis of glucose uptake and glycolytic enzymes implied that glucose assimilation was not directly involved in the phenomenon. By use of a wild-type Z. mobilis genomic library, a 4.5-kb DNA fragment which complemented in low copy number the glucose-defective phenotype as well as glucokinase and glucose uptake of CU1Rif2 was isolated. This fragment carries a gene cluster consisting of four putative coding regions, encoding 167, 167, 145, and 220 amino acids with typical Z. mobilis codon usage, -35 and -10 promoter elements, and individual Shine-Dalgarno consensus sites. However, strong homologies were not detected in a BLAST2 (EMBL-Heidelberg) computer search with known protein sequences.  (+info)

Complementation of conjugation functions of Streptomyces lividans plasmid pIJ101 by the related Streptomyces plasmid pSB24.2. (30/3280)

A database search revealed extensive sequence similarity between Streptomyces lividans plasmid pIJ101 and Streptomyces plasmid pSB24. 2, which is a deletion derivative of Streptomyces cyanogenus plasmid pSB24.1. The high degree of relatedness between the two plasmids allowed the construction of a genetic map of pSB24.2, consisting of putative transfer and replication loci. Two pSB24.2 loci, namely, the cis-acting locus for transfer (clt) and the transfer-associated korB gene, were shown to be capable of complementing the pIJ101 clt and korB functions, respectively, a result that is consistent with the notion that pIJ101 and the parental plasmid pSB24.1 encode highly similar, if not identical, conjugation systems.  (+info)

Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains. (31/3280)

Pseudomonas pseudoalcaligenes POB310(pPOB) and Pseudomonas sp. strains B13-D5(pD30.9) and B13-ST1(pPOB) were introduced into soil microcosms containing 3-phenoxybenzoic acid (3-POB) in order to evaluate and compare bacterial survival, degradation of 3-POB, and transfer of plasmids to a recipient bacterium. Strain POB310 was isolated for its ability to use 3-POB as a growth substrate; degradation is initiated by POB-dioxygenase, an enzyme encoded on pPOB. Strain B13-D5 contains pD30.9, a cloning vector harboring the genes encoding POB-dioxygenase; strain B13-ST1 contains pPOB. Degradation of 3-POB in soil by strain POB310 was incomplete, and bacterial densities decreased even under the most favorable conditions (100 ppm of 3-POB, supplementation with P and N, and soil water-holding capacity of 90%). Strains B13-D5 and B13-ST1 degraded 3-POB (10 to 100 ppm) to concentrations of <50 ppb with concomitant increases in density from 10(6) to 10(8) CFU/g (dry weight) of soil. Thus, in contrast to strain POB310, the modified strains had the following two features that are important for in situ bioremediation: survival in soil and growth concurrent with removal of an environmental contaminant. Strains B13-D5 and B13-ST1 also completely degraded 3-POB when the inoculum was only 30 CFU/g (dry weight) of soil. This suggests that in situ bioremediation may be effected, in some cases, with low densities of introduced bacteria. In pure culture, transfer of pPOB from strains POB310 and B13-ST1 to Pseudomonas sp. strain B13 occurred at frequencies of 5 x 10(-7) and 10(-1) transconjugant per donor, respectively. Transfer of pPOB from strain B13-ST1 to strain B13 was observed in autoclaved soil but not in nonautoclaved soil; formation of transconjugant bacteria was more rapid in soil containing clay and organic matter than in sandy soil. Transfer of pPOB from strain POB310 to strain B13 in soil was never observed.  (+info)

High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. (32/3280)

Quantitative in situ determination of conjugative gene transfer in defined bacterial biofilms using automated confocal laser scanning microscopy followed by three-dimensional analysis of cellular biovolumes revealed conjugation rates 1,000-fold higher than those determined by classical plating techniques. Conjugation events were not affected by nutrient concentration alone but were influenced by time and biofilm structure.  (+info)