Hyperinsulinism in infancy: from basic science to clinical disease. (1/62)

Ion channelopathies have now been described in many well-characterized cell types including neurons, myocytes, epithelial cells, and endocrine cells. However, in only a few cases has the relationship between altered ion channel function, cell biology, and clinical disease been defined. Hyperinsulinism in infancy (HI) is a rare, potentially lethal condition of the newborn and early childhood. The causes of HI are varied and numerous, but in almost all cases they share a common target protein, the ATP-sensitive K+ channel. From gene defects in ion channel subunits to defects in beta-cell metabolism and anaplerosis, this review describes the relationship between pathogenesis and clinical medicine. Until recently, HI was generally considered an orphan disease, but as parallel defects in ion channels, enzymes, and metabolic pathways also give rise to diabetes and impaired insulin release, the HI paradigm has wider implications for more common disorders of the endocrine pancreas and the molecular physiology of ion transport.  (+info)

Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. (2/62)

Hyperinsulinism (HI) of infancy is a neuroendocrine disease secondary to either focal adenomatous hyperplasia or a diffuse abnormality of insulin secretion of the pancreas. HI with focal lesions can revert by selective surgical resection in contrast to the diffuse form, which requires subtotal pancreatectomy when resistant to medical treatment. Neuroendocrine diseases are a heterogeneous group of entities with the ability to take up amine precursors and to convert them into biogenic amines. Therefore, the aim of this study was (a) to evaluate the use of PET with 18F-fluoro-L-dihydroxyphenylalanine (18F-fluoro-L-DOPA) and (b) to distinguish between focal and diffuse HI. METHODS: Fifteen patients (11 boys, 4 girls) with neonatal HI were enrolled in this study. All patients fasted for at least 6 h before the PET examination and their medication was discontinued for at least 72 h. The examination was performed under light sedation (pentobarbital associated with or without chloral). The dynamic acquisition started 45-65 min after the injection of 18F-fluoro-L-DOPA (4.0 MBq/kg weight). Four or 6 scans of 5 min each (2 or 3 steps according to the height of the patient) were acquired from the neck to the upper legs. RESULTS: An abnormal focal pancreatic uptake of 18F-fluoro-L-DOPA was observed in 5 patients, whereas a diffuse uptake of the radiotracer was observed in the pancreatic area of the other patients. All patients with focal radiotracer uptake and also 4 of 10 patients with pancreatic diffuse radiotracer accumulation, unresponsive to medical treatment, underwent surgery. The histopathologic results confirmed the PET findings--that is, focal versus diffuse HI. CONCLUSION: The results of this study suggest that 18F-fluoro-L-DOPA could be an accurate noninvasive technique to distinguish between focal and diffuse forms of HI.  (+info)

Low temperature completely rescues the function of two misfolded K ATP channel disease-mutants. (3/62)

The pancreatic ATP-sensitive potassium channels comprise two subunits: SUR1 and Kir6.2. Two SUR1 mutations, A116P and V187D, reduce channel activity causing persistent hyperinsulinemic hypoglycemia of infancy. We investigated whether these mutations cause temperature sensitive misfolding. We show that the processing defect of these mutants is temperature sensitive and these two mutations disrupt the association between SUR1 and Kir6.2 by causing misfolding in SUR1 at 37 degrees C but can be rescued at 18 degrees C. Extensive electrophysiological characterization of these mutants indicated that low temperature largely, if not completely, corrects the folding defect of these two SUR1 mutants observed at 37 degrees C.  (+info)

A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. (4/62)

The beta-cell ATP-sensitive potassium (KATP) channel controls insulin secretion by linking glucose metabolism to membrane excitability. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes that encode the sulfonylurea receptor 1 or the inward rectifier Kir6.2 subunit of the channel, is a major cause of congenital hyperinsulinism. Here, we report identification of a novel KCNJ11 mutation associated with the disease that renders a missense mutation, F55L, in the Kir6.2 protein. Mutant channels reconstituted in COS cells exhibited a wild-type-like surface expression level and normal sensitivity to ATP, MgADP, and diazoxide. However, the intrinsic open probability of the mutant channel was greatly reduced, by approximately 10-fold. This low open probability defect could be reversed by application of phosphatidylinositol 4,5-bisphosphates or oleoyl-CoA to the cytoplasmic face of the channel, indicating that reduced channel response to membrane phospholipids and/or long chain acyl-CoAs underlies the low intrinsic open probability in the mutant. Our findings reveal a novel molecular mechanism for loss of KATP channel function and congenital hyperinsulinism and support the importance of phospholipids and/or long chain acyl-CoAs in setting the physiological activity of beta-cell KATP channels. The F55L mutation is located in the slide helix of Kir6.2. Several permanent neonatal diabetes-associated mutations found in the same structure have the opposite effect of increasing intrinsic channel open probability. Our results also highlight the critical role of the Kir6.2 slide helix in determining the intrinsic open probability of KATP channels.  (+info)

Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. (5/62)

Congenital hyperinsulinism is a rare pancreatic endocrine cell disorder that has been categorized histologically into diffuse and focal forms. In focal hyperinsulinism, the pancreas contains a focus of endocrine cell adenomatous hyperplasia, and the patients have been reported to possess paternally inherited mutations of the ABCC8 and KCNJ11 genes, which encode subunits of an ATP-sensitive potassium channel (K(ATP)). In addition, the hyperplastic endocrine cells show loss of maternal 11p15, where imprinted genes such as p57(kip2) reside. In order to evaluate whether all cases of focal hyperinsulinism are caused by this mechanism, 56 pancreatectomy specimens with focal hyperinsulinism were tested for the loss of maternal allele by two methods: immunohistochemistry for p57(kip2) (n=56) and microsatellite marker analysis (n=27). Additionally, 49 patients were analyzed for K(ATP) mutations. Out of 56 focal lesions, 48 demonstrated clear loss of p57(kip2) expression by immunohistochemistry. The other eight lesions similarly showed no nuclear labeling, but the available tissue was not ideal for definitive interpretation. Five of these eight patients had paternal K(ATP) mutations, of which four demonstrated loss of maternal 11p15 within the lesion by microsatellite marker analysis. All of the other three without a paternal K(ATP) mutation showed loss of maternal 11p15. K(ATP) mutation analysis identified 32/49 cases with paternal mutations. There were seven patients with nonmaternal mutations whose paternal DNA material was not available, and one patient with a mutation that was not present in either parent's DNA. These eight patients showed either loss of p57(kip2) expression or loss of maternal 11p15 region by microsatellite marker analysis, as did the remaining nine patients with no identifiable K(ATP) coding region mutations. The combined results from the immunohistochemical and molecular methods indicate that maternal 11p15 loss together with paternal K(ATP) mutation is the predominant causative mechanism of focal hyperinsulinism.  (+info)

Noninvasive diagnosis of focal hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. (6/62)

Congenital hyperinsulinism of infancy (CHI) is characterized by severe hypoglycemia due to dysregulated insulin secretion, associated with either focal or diffuse pathology of the endocrine pancreas. The focal condition is caused by a paternally inherited mutation in one of the genes encoding the subunits of the beta-cell ATP-sensitive potassium channel (SUR1/ABCC8 or Kir6.2/KCNJ11) and somatic loss of maternal 11p15 alleles within the affected area. Until now, preoperative diagnostics have relied on technically demanding and invasive catheterization techniques. We evaluated the utility of fluorine-18 l-3,4-dihydroxyphenylalanine ([(18)F]-DOPA) positron emission tomography (PET) to identify focal pancreatic lesions in 14 CHI patients, 11 of which carried mutations in the ABCC8 gene (age 1-42 months). To reduce bias in PET image interpretation, quantitative means for evaluation of pancreatic [(18)F]-DOPA uptake were established. Five patients had a visually apparent focal accumulation of [(18)F]-DOPA and standardized uptake value (SUV) >50% higher (mean 1.8-fold) than the maximum SUV of the unaffected part of the pancreas. When these patients were operated on, a focus of 4-5 x 5-8 mm matching with the PET scan was found, and all were normoglycemic after resection of the focus. The remaining nine patients had diffuse accumulation of [(18)F]-DOPA in the pancreas (SUV ratio <1.5). Diffuse histology was verified in four of these, and pancreatic catheterization was consistent with diffuse pathology in four cases. In conclusion, [(18)F]-DOPA PET is a promising noninvasive method for the identification and localization of the focal form of CHI.  (+info)

Molecular mechanisms of neonatal hyperinsulinism. (7/62)

Congenital hyperinsulinism (CHI), characterized by profound hypoglycaemia related to inappropriate insulin secretion, may be associated histologically with either diffuse insulin hypersecretion or focal adenomatous hyperplasia, which share a similar clinical presentation, but result from different molecular mechanisms. Whereas diffuse CHI is of autosomal recessive, or less frequently of autosomal dominant, inheritance, focal CHI is sporadic. The most common mechanism underlying CHI is dysfunction of the pancreatic ATP-sensitive potassium channel (K(+)(ATP)). The two subunits of the K(+)(ATP) channel are encoded by the sulfonylurea receptor gene (SUR1 or ABCC8) and the inward-rectifying potassium channel gene (KIR6.2 or KCNJ11), both located in the 11p15.1 region. Germ-line, paternally inherited, mutations of the SUR1 or KIR6.2 genes, together with somatic maternal haplo-insufficiency for 11p15.5, were shown to result in focal CHI. Diffuse CHI results from germ-line mutations in the SUR1 or KIR6.2 genes, but also from mutations in several other genes, namely glutamate dehydrogenase (with associated hyperammonaemia), glucokinase, short-chain L-3-hydroxyacyl-CoA dehydrogenase, and insulin receptor gene. Hyperinsulinaemic hypoglycaemia may be observed in several overlapping syndromes, such as Beckwith-Wiedemann syndrome (BWS), Perlman syndrome, and, more rarely, Sotos syndrome. Mosaic genome-wide paternal isodisomy has recently been reported in patients with clinical signs of BWS and CHI. The primary causes of CHI are genetically heterogeneous and have not yet been completely unveiled. However, secondary causes of hyperinsulinism have to be considered such as fatty acid oxidation deficiency, congenital disorders of glycosylation and factitious hypoglycaemia secondary to Munchausen by proxy syndrome.  (+info)

Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. (8/62)

BACKGROUND: Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4alpha) and HNF1A/TCF1 (encoding HNF-1alpha), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. METHODS AND FINDINGS: We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic beta-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. CONCLUSIONS: HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.  (+info)