Carbohydrate-deficient glycoprotein syndromes. (17/113)

Four types of carbohydrate-deficient glycoprotein syndrome have been described, and the cause of two of them has been found. The symptoms and signs of these syndromes are described, with variations that occur at different ages. The commonest is type Ia with an autosomal recessive form of inheritance, and the gene responsible has been mapped to 16p. The typical pathology is atrophy of the cerebellum and brainstem, sometimes also involving the cortex, although both the pathology and the biochemical deficiencies vary between different types of syndrome. The diagnosis depends firstly on recognising the clinical features, including the presence of complications such as thyroid disorders. Then biochemical tests can be carried out, especially chromatographic carbohydrate-deficient transferrin assay and isoelectric focusing of serum transferrin. The prognosis depends on the complications, renal, hepatic, and cardiac, but affected children will be severely handicapped. Therefore treatment consists mainly of coping with the complications, and supporting the child and the family. Oral infusion of mannose can be effective in type Ib disease.  (+info)

Carbohydrate-deficient glycoprotein syndromes. (18/113)

Carbohydrate-deficient glycoprotein syndromes are rare, multisystemic diseases, typically with major nervous system impairment, that are caused by hypo- and unglycosylation of N-linked glycoproteins. Hence, a biochemical evidence of this abnormality, like hypoglycosylation of serum transferrin is essential for diagnosis. Clinically and biochemically, six types of the disease have been delineated. Three of them are caused by deficiencies of the enzymes that are required for a proper glycosylation of lipid--(dolichol) linked oligosaccharide (phosphomannomutase or phosphomannose isomerase or alpha-glycosyltransferase), and one results from a deficiency of Golgi resident N-acetylglucosaminyltransferase II. In addition one variant of the disease has been reported as due to a defective biosynthesis of dolichol iself. The diseases are heritable but genetics has been established for only two types. Therapy, based on administration of mannose to patients is currently under investigation. It benefits patients with deficiency of phosphomannose isomerase. Taking into account the complexity of N-linked glycosylation of proteins more of the disease variants is expected to be found.  (+info)

Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia). (19/113)

The R141H mutation in the PMM2 gene is the most frequent mutation in type Ia of the congenital disorders of glycosylation (formerly carbohydrate-deficient glycoprotein syndromes)(CDG-Ia). However, it has never been observed in the homozygous state. Homozygosity for this mutation is probably incompatible with life. In this study, we determined the frequency of R141H in two normal populations: in neonates of Dutch origin 1/79 were carriers, whilst in the Danish population, a carrier frequency of 1/60 was found. These figures are clearly in disequilibrium with the frequency of CDG-Ia that has been estimated at 1/80,000 to 1/40,000 in these populations. Haplotype analysis of 43 patients with the R141H mutation of different geographic origins indicated that the R141H is an old mutation in the Caucasian population. Based on the new data, the disease frequency has been calculated at 1/20,000 in these populations. It is concluded that the disease is probably underdiagnosed.  (+info)

Identification of four novel PMM2 mutations in congenital disorders of glycosylation (CDG) Ia French patients. (20/113)

We screened 11 unrelated French patients with congenital disorders of glycosylation (CDG) Ia for PMM2 mutations. Twenty one missense mutations on the 22 chromosomes (95%) including four novel mutations were identified: C9Y (G26A) in exon 1, L32R (TA95GC) in exon 2, and T226S (C677G) and C241S (G722C) in exon 8. We studied the PMM activity of these four novel mutant proteins and of the R141H mutant protein in an E coli expression system. The T226S, C9Y, L32R, and C241S mutant proteins have decreased specific activity (23 to 41% of normal), are all more or less thermolabile, and R141H has no detectable activity. Our results indicate that the new mutations identified here are less severe than the inactive R141H mutant protein, conferring residual PMM activity compatible with life.  (+info)

A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. (21/113)

INTRODUCTION: Congenital disorders of glycosylation (CDG), or carbohydrate deficient glycoprotein syndromes, form a new group of multisystem disorders characterised by defective glycoprotein biosynthesis, ascribed to various biochemical mechanisms. METHODS: We report the clinical, biological, and molecular analysis of 26 CDG I patients, including 20 CDG Ia, two CDG Ib, one CDG Ic, and three CDG Ix, detected by western blotting and isoelectric focusing of serum transferrin. RESULTS: Based on the clinical features, CDG Ia could be split into two subtypes: a neurological form with psychomotor retardation, strabismus, cerebellar hypoplasia, and retinitis pigmentosa (n=11), and a multivisceral form with neurological and extraneurological manifestations including liver, cardiac, renal, or gastrointestinal involvement (n=9). Interestingly, dysmorphic features, inverted nipples, cerebellar hypoplasia, and abnormal subcutaneous fat distribution were not consistently observed in CDG Ia. By contrast, the two CDG Ib patients had severe liver disease, enteropathy, and hyperinsulinaemic hypoglycaemia but no neurological involvement. Finally, the CDG Ic patient and one of the CDG Ix patients had psychomotor retardation and seizures. The other CDG Ix patients had severe proximal tubulopathy, bilateral cataract, and white matter abnormalities (one patient), or multiorgan failure and multiple birth defects (one patient). CONCLUSIONS: Owing to the remarkable clinical variability of CDG, this novel disease probably remains largely underdiagnosed. The successful treatment of CDG Ib patients with oral mannose emphasises the paramount importance of early diagnosis of PMI deficiency.  (+info)

High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). (22/113)

Congenital disorders of glycosylation (CDGs) are a rapidly enlarging group of inherited diseases with abnormal N-glycosylation of glycoconjugates. Most patients have CDG-Ia, which is due to a phosphomannomutase (PMM) deficiency. In this article, we report that a significant portion (9 of 54) of patients with CDG-Ia had a rather high residual PMM activity in fibroblasts included in the normal range (means of the controls +/- 2 SD) and amounting to 35%-70% of the mean control value. The clinical diagnosis of CDG-Ia was made difficult by the fact that most (6 of 9) of these patients belong to a subgroup characterized by a phenotype that is milder than classical CDG-Ia. These patients lack some of the symptoms that are suggestive for the diagnosis, such as inverted nipples and abnormal fat deposition, and, as a mean, had higher residual PMM activities in fibroblasts (2.05+/-0.61 mU/mg protein, n=9; vs. controls 5.34+/-1.74 mU/mg protein, n=22), compared with patients with moderate (1.32+/-0.86 mU/mg protein, n=18) or severe (0.63+/-0.56 mU/mg protein, n=27, P<.001) cases. Yet they all showed mild mental retardation, hypotonia, cerebellar hypoplasia, and strabismus. All of them had an abnormal serum transferrin pattern and a significantly reduced PMM activity in leukocytes. Six of the nine patients with mild presentations were compound heterozygotes for the C241S mutation, which is known to reduce PMM activity by only approximately 2-fold. Our results indicate that intermediate PMM values in fibroblasts may mask the diagnosis of CDG-Ia, which is better accomplished by measurement of PMM activity in leukocytes and mutation search in the PMM2 gene. They also indicate that there is some degree of correlation between the residual activity in fibroblasts and the clinical phenotype.  (+info)

Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. (23/113)

AIMS: To delineate common and variable features and outcome of children with congenital disorder of glycosylation type Ia (CDG-Ia) caused by the frequent R141H/F119L PMM2 genotype. METHODS: Clinical data on 25 patients (mean age 7.6 years, range 0-19) were analysed. RESULTS: All patients had an early presentation with severe feeding problems and failure to thrive, hypotonia, hepatic dysfunction, inverted nipples, and abnormal subcutaneous fat pads. Eighteen patients were hospitalised in the neonatal period. Developmental delay was obvious before age 6 months. During the first seven months mean standard deviation score (SDS) for weight and length decreased 2.7 (SD = 2) and 2.4 (SD = 2), respectively. Mental retardation, ataxia, muscular atrophy, and febrile seizures were consistent features after infancy. Variable features included pericardial effusions, afebrile seizures, and stroke like episodes. Computed tomography/magnetic resonance imaging of the brain was normal in two patients examined before 4 months of age, but 18 children examined after 3 months of age had cerebellar atrophy, and 10 children also had supratentorial atrophy. Subsequent imaging showed progression of the cerebellar and supratentorial atrophy in eight and four of 10 children, respectively. Mean head circumference SDS declined from zero to -1.9 SD from age 3 months to 5 years. Motor ability ranged from none to walking with a rolator, and vocabulary ranged from none to comprehensible speech. The overall mortality ascribed to CDG-Ia was 18%. CONCLUSION: Patients with the R141H/F119L genotype have an early uniform presentation including severe failure to thrive, but their functional outcome is variable. This genotype may well cause clinical manifestations in the severe end of the spectrum of CDG-Ia.  (+info)

Successful treatment of carbohydrate deficient glycoprotein syndrome type 1b with oral mannose. (24/113)

An Asian girl presented with failure to thrive, congenital hepatic fibrosis, protein losing enteropathy, and hypoglycaemia. Phosphomannose isomerase activity in skin fibroblasts was reduced. She is homozygous for a mutation, D131N, in the phosphomannose isomerase gene (PM1), consistent with the diagnosis of carbohydrate deficient glycoprotein syndrome type 1b. She responded to oral mannose treatment.  (+info)