Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. (25/3198)

Corticotropin-releasing hormone (CRH) is a central regulator of the hormonal stress response, causing stimulation of corticotropin and glucocorticoid secretion. CRH is also widely believed to mediate stress-induced behaviors, implying a broader, integrative role for the hormone in the psychological stress response. Mice lacking the CRH gene exhibit normal stress-induced behavior that is specifically blocked by a CRH type 1 receptor antagonist. The other known mammalian ligand for CRH receptors is urocortin. Normal and CRH-deficient mice have an identical distribution of urocortin mRNA, which is confined to the region of the Edinger-Westphal nucleus, and is absent from regions known to mediate stress-related behaviors. Since the Edinger-Westphal nucleus is not known to project to any brain regions believed to play a role in anxiety-like behavior, an entirely different pathway must be postulated for urocortin in the Edinger-Westphal nucleus to mediate these behaviors in CRH-deficient mice. Alternatively, an unidentified CRH-like molecule other than CRH or urocortin, acting through the CRH receptors in brain regions believed to mediate stress-induced behaviors, may mediate the behavioral response to stress, either alone or in concert with CRH.  (+info)

Protein synthesis-dependent and mRNA synthesis-independent intermediate phase of memory in Hermissenda. (26/3198)

The conditioned stimulus pathway in Hermissenda has been used to examine the time-dependent mechanisms of memory consolidation following one-trial conditioning. Here we report an intermediate phase of memory consolidation following one-trial conditioning that requires protein synthesis, but not mRNA synthesis. In conditioned animals, enhanced excitability normally expressed during an intermediate phase of memory was reversed by the protein synthesis inhibitor anisomycin, but not by the mRNA synthesis inhibitor 5, 6-dichloro-1-beta-D-ribobenzimidazole (DRB). Associated with the intermediate phase of memory is an increase in the phosphorylation of a 24-kDa protein. Anisomycin present during the intermediate phase blocked the increased phosphorylation of the 24-kDa phosphoprotein, but did not block the increased phosphorylation of other proteins associated with conditioning or significantly change their baseline phosphorylation. DRB did not reverse enhanced excitability or decrease protein phosphorylation expressed during the intermediate phase of memory formation, but it did reverse enhanced excitability 3.5 h after conditioning. Phosphorylation of the 24-kDa protein may support enhanced excitability during the intermediate phase, in the transition period between short- and long-term memory.  (+info)

Influence of S-adenosyl-L-methionine on chronic mild stress-induced anhedonia in castrated rats. (27/3198)

1. S-adenosyl-L-methionine (SAMe) is the most important methyl donor in the brain and is essential for polyamine synthesis. Methyl group deficiency in the brain has been implicated in depression; on the other hand, polyamines enhance phosphorylation processes, and phosphorylation of functional proteins in neurons in involved in the therapeutic mechanisms of antidepressants. 2. The effect of SAMe in an animal model of 'depression', the chronic mild stress-induced anhedonia, was studied using long-term castrated male and female Lister hooded rats. 3. Chronic daily exposure to an unpredictable sequence of mild stressors produced, within 3 weeks, a significant reduction of the consumption of a sucrose solution. SAMe (100, 200 or 300 mg kg-1 daily i.m.) while having no influence on sucrose intake in non-stressed animals, dose-dependently reinstated sucrose consumption within the first week of treatment, both in male and in female stressed rats. Imipramine (10 mg kg-1 daily i.p.) produced a similar effect after a 3 week treatment. 4. Similarly, a palatable food reward-induced place preference conditioning was developed in SAMe (200 or 300 mg kg-1 daily i.m.)--and in imipramine (10 mg kg-1 daily i.p.)--treated chronically stressed animals (males and females), whilst it could not be obtained in vehicle-treated rats. 5. Moreover, the same doses of SAMe (but not of imipramine) restored the exploratory activity and curiosity for the environment (rearing), in the open-field test. 6. While imipramine caused a blockade of the growth throughout the treatment, SAMe produced only a transient growth arrest during the first week of treatment. 7. These results show that SAMe reverses an experimental condition of 'depression-like' behaviour in rats, the effect being more rapid and complete than that of imipramine, and without apparent side effects.  (+info)

5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. (28/3198)

In an attempt to characterize the contribution of the 5-HT1B receptor to behavior, 5-HT1B knock-out (KO) mice were subjected to a battery of behavioral paradigms aimed at differentiating various components of cognitive and emotional behaviors. In an object exploration task, wild-type (WT) and 5-HT1B KO mice did not differ in locomotor activity. 5-HT1B KO mice, however, displayed lower thigmotaxis (an index of anxiety) associated with a higher level of object exploratory activity, but no genotype differences were observed in the elevated plus maze. 5-HT1B KO mice also displayed a lack of exploratory habituation. In the spatial version of the Morris water maze, 5-HT1B KO mice showed higher performances in acquisition and transfer test, which was not observed in the visual version of the task. No genotype differences were found in contextual fear conditioning, because both WT and 5-HT1B KO mice were able to remember the context where they had received the aversive stimulus. The deletion of the 5-HT1B receptor, associated with appropriate behavioral paradigms, thus allowed us to dissociate anxiety from response to novelty, and perseverative behavior (lack of habituation) from adaptive behavioral inhibition underlying cognitive flexibility (transfer stage in the water maze). The deletion of the 5-HT1B receptor did not result in significant developmental plasticities for other major 5-HT receptor types but may have influenced other neurotransmission systems. The 5-HT1B receptor may be a key target for serotonin in the modulation of cognitive behavior, particularly in situations involving a high cognitive demand.  (+info)

Cognitive deficits in a genetic mouse model of the most common biochemical cause of human mental retardation. (29/3198)

Phenylalanine hydroxylase (Pah)-deficient "PKU mice" have a mutation in the Pah gene that causes phenylketonuria (PKU) in humans. PKU produces cognitive deficits in humans if it is untreated. We report here the first evidence that the genetic mouse model of PKU (Pah(enu2)) also produces cognitive impairments. PKU mice were impaired on both odor discrimination reversal and latent learning compared with heterozygote littermates and with wild-type mice of the same BTBR strain. A small container of cinnamon-scented sand was presented on the right or left, and nutmeg-scented sand was presented on the other side; left-right location varied over trials. Digging in sand of the correct scent was rewarded by finding phenylalanine-free chocolate. To prevent scent cuing, new containers were used on every trial, and both containers always contained chocolate. Digging in the incorrect choice was stopped before the chocolate was uncovered. Once criterion was reached, the other scent was rewarded. PKU mice were impaired on reversals 2, 3, and 4. They were also impaired in latent learning. On day 1, half the mice were allowed to explore a maze and discover the location of water. On day 2, all mice were water-deprived and were placed in the maze. Whereas pre-exposed wild-type and heterozygous mice showed evidence that they remembered the location of the water and hence could find the water faster on day 2, pre-exposed PKU mice showed no significant benefit from their pre-exposure on day 1.  (+info)

Effects of systemically administered dynorphin A(1-17) in rhesus monkeys. (30/3198)

The effects of i.v. dynorphin A(1-17) and its main nonopioid biotransformation fragment, dynorphin A(2-17), were compared in rhesus monkeys with those of the selective kappa-opioid agonist, U69, 593, in assays of operant behavior, thermal antinociception, and neuroendocrine function (prolactin release). Dynorphin A(1-17) (0. 1-3.2 mg/kg i.v.) and U69,593 (0.001-0.032 mg/kg s.c.) decreased rates of schedule-controlled (fixed ratio 20) food-reinforced responding, whereas dynorphin A(2-17) (1-3.2 mg/kg i.v.) was ineffective. Pretreatment studies with the opioid antagonist quadazocine (0.32 mg/kg s.c.) revealed that the operant effects of dynorphin A(1-17) were not mediated by kappa- or micro-opioid receptors. A different profile was observed in the warm water tail withdrawal assay of thermal antinociception, where both dynorphin A(1-17) and A(2-17) (0.032-3.2 mg/kg i.v., n = 4) were modestly effective in 50 degrees C water, and both were ineffective in 55 degrees C water. By comparison, U69,593 (0.032-0.18 mg/kg s.c.) was maximally effective in 50 degrees C water and partially effective in 55 degrees C. kappa-opioid agonists increase serum levels of prolactin in animals and humans. Dynorphin A(1-17) (ED(50) = 0.0011 mg/kg i.v.), similar to U69,593 (ED(50) = 0.0030 mg/kg i.v.), was very potent in increasing serum prolactin levels in follicular phase female rhesus monkeys, whereas dynorphin A(2-17) (0.32 mg/kg i.v.) was ineffective. The effects of dynorphin A(1-17) and U69,593 on serum prolactin were both antagonized by quadazocine (0.32 mg/kg s.c.) in a surmountable manner, consistent with opioid receptor mediation. The present studies show that serum prolactin levels are a sensitive quantitative endpoint to study the systemic effects of the endogenous opioid peptide, dynorphin A(1-17), in primates.  (+info)

Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. (31/3198)

Monkeys that receive chronic low-dose 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) administration have difficulty performing numerous cognitive tasks. This study further examines the extent to which chronic low-dose MPTP exposure affects performance of a visual memory task [variable delayed response (VDR)] with both attentional and short-term memory components and assesses the effects of the novel neuronal nicotinic acetylcholine receptor agonist SIB-1508Y and levodopa on cognitive task performance. Before MPTP treatment, these monkeys displayed a delay-dependent decrement in performance on the VDR task and performed well on delayed matching-to-sample and visual pattern discrimination tasks. Chronic low-dose MPTP treatment caused a shift to a delay-independent pattern of responding on the VDR task, such that short-delay trials were performed as poorly as long-delay trials. There were also deficits in performing the delayed matching-to-sample task, whereas visual discrimination performance remained intact. SIB-1508Y normalized the pattern of response on the VDR task by significantly improving performance on short-delay trials and on the delayed matching-to-sample task. These effects lasted up to 24 to 48 h after SIB-1508Y administration. Neither levodopa nor nicotine significantly improved task performance. These results suggest that chronic low-dose MPTP exposure results in a cognitive disturbance that can be corrected by the nicotinic acetylcholine receptor agonist SIB-1508Y but not by levodopa. Thus, SIB-1508Y may be useful in the treatment of the cognitive deficits in Parkinson's disease.  (+info)

The irreversible gamma-aminobutyric acid (GABA) transaminase inhibitor gamma-vinyl-GABA blocks cocaine self-administration in rats. (32/3198)

gamma-Vinyl gamma-aminobutyric acid (GABA) (GVG) is an irreversible inhibitor of GABA transaminase, the primary enzyme involved in GABA metabolism. Acute administration of GVG increases brain GABA levels and blocks cocaine-induced locomotor activity, cocaine-induced lowering of brain stimulation reward thresholds, and cocaine-induced conditioned place preference. To further evaluate the effects of GVG on cocaine-induced reward, we examined its effects on cocaine self-administration in male Wistar rats on fixed ratio 5 and progressive ratio schedules of reinforcement. Additionally, the effects of GVG on operant responding for a food reward were examined on the same two schedules to determine whether the effects of GVG were specific to cocaine reward or generalized to other types of reward. GVG dose dependently decreased responding for cocaine on both schedules of reinforcement, suggesting that GVG attenuated the reward value of the cocaine. Responding for food was also decreased by GVG, suggesting that the effects of increased GABA levels induced by GVG may have a general effect on central reward systems. Data from this and other studies indicate that GVG does not induce motor impairment, decrease spontaneous locomotor activity, or induce catalepsy. Taken together, these data suggest that increases in GABAergic activity induced by GVG have an attenuating effect on centrally mediated reward systems and that the GABA system may be a useful target in the development of new therapeutic strategies for cocaine addiction.  (+info)