Comparison of linkage-disequilibrium methods for localization of genes influencing quantitative traits in humans. (57/31542)

Linkage disequilibrium has been used to help in the identification of genes predisposing to certain qualitative diseases. Although several linkage-disequilibrium tests have been developed for localization of genes influencing quantitative traits, these tests have not been thoroughly compared with one another. In this report we compare, under a variety of conditions, several different linkage-disequilibrium tests for identification of loci affecting quantitative traits. These tests use either single individuals or parent-child trios. When we compared tests with equal samples, we found that the truncated measured allele (TMA) test was the most powerful. The trait allele frequencies, the stringency of sample ascertainment, the number of marker alleles, and the linked genetic variance affected the power, but the presence of polygenes did not. When there were more than two trait alleles at a locus in the population, power to detect disequilibrium was greatly diminished. The presence of unlinked disequilibrium (D'*) increased the false-positive error rates of disequilibrium tests involving single individuals but did not affect the error rates of tests using family trios. The increase in error rates was affected by the stringency of selection, the trait allele frequency, and the linked genetic variance but not by polygenic factors. In an equilibrium population, the TMA test is most powerful, but, when adjusted for the presence of admixture, Allison test 3 becomes the most powerful whenever D'*>.15.  (+info)

Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. (58/31542)

In a systematic effort to design potent inhibitors of the anti-apoptotic tyrosine kinase BTK (Bruton's tyrosine kinase) as anti-leukemic agents with apoptosis-promoting and chemosensitizing properties, we have constructed a three-dimensional homology model of the BTK kinase domain. Our modeling studies revealed a distinct rectangular binding pocket near the hinge region of the BTK kinase domain with Leu460, Tyr476, Arg525, and Asp539 residues occupying the corners of the rectangle. The dimensions of this rectangle are approximately 18 x 8 x 9 x 17 A, and the thickness of the pocket is approximately 7 A. Advanced docking procedures were employed for the rational design of leflunomide metabolite (LFM) analogs with a high likelihood to bind favorably to the catalytic site within the kinase domain of BTK. The lead compound LFM-A13, for which we calculated a Ki value of 1.4 microM, inhibited human BTK in vitro with an IC50 value of 17.2 +/- 0.8 microM. Similarly, LFM-A13 inhibited recombinant BTK expressed in a baculovirus expression vector system with an IC50 value of 2.5 microM. The energetically favorable position of LFM-A13 in the binding pocket is such that its aromatic ring is close to Tyr476, and its substituent group is sandwiched between residues Arg525 and Asp539. In addition, LFM-A13 is capable of favorable hydrogen bonding interactions with BTK via Asp539 and Arg525 residues. Besides its remarkable potency in BTK kinase assays, LFM-A13 was also discovered to be a highly specific inhibitor of BTK. Even at concentrations as high as 100 micrograms/ml (approximately 278 microM), this novel inhibitor did not affect the enzymatic activity of other protein tyrosine kinases, including JAK1, JAK3, HCK, epidermal growth factor receptor kinase, and insulin receptor kinase. In accordance with the anti-apoptotic function of BTK, treatment of BTK+ B-lineage leukemic cells with LFM-A13 enhanced their sensitivity to ceramide- or vincristine-induced apoptosis. To our knowledge, LFM-A13 is the first BTK-specific tyrosine kinase inhibitor and the first anti-leukemic agent targeting BTK.  (+info)

Identification of substrate binding site of cyclin-dependent kinase 5. (59/31542)

Cyclin-dependent kinase 5 (CDK5), unlike other CDKs, is active only in neuronal cells where its neuron-specific activator p35 is present. However, it phosphorylates serines/threonines in S/TPXK/R-type motifs like other CDKs. The tail portion of neurofilament-H contains more than 50 KSP repeats, and CDK5 has been shown to phosphorylate S/T specifically only in KS/TPXK motifs, indicating highly specific interactions in substrate recognition. CDKs have been shown to have a high preference for a basic residue (lysine or arginine) as the n+3 residue, n being the location in the primary sequence of a phosphoacceptor serine or threonine. Because of the lack of a crystal structure of a CDK-substrate complex, the structural basis for this specific interaction is unknown. We have used site-directed mutagenesis ("charged to alanine") and molecular modeling techniques to probe the recognition interactions for substrate peptide (PKTPKKAKKL) derived from histone H1 docked in the active site of CDK5. The experimental data and computer simulations suggest that Asp86 and Asp91 are key residues that interact with the lysines at positions n+2 and/or n+3 of the substrates.  (+info)

Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. (60/31542)

The chemokine receptor CCR5 is the major coreceptor for R5 human immunodeficiency virus type-1 strains. We mapped the epitope specificities of 18 CCR5 monoclonal antibodies (mAbs) to identify domains of CCR5 required for chemokine binding, gp120 binding, and for inducing conformational changes in Env that lead to membrane fusion. We identified mAbs that bound to N-terminal epitopes, extracellular loop 2 (ECL2) epitopes, and multidomain (MD) epitopes composed of more than one single extracellular domain. N-terminal mAbs recognized specific residues that span the first 13 amino acids of CCR5, while nearly all ECL2 mAbs recognized residues Tyr-184 to Phe-189. In addition, all MD epitopes involved ECL2, including at least residues Lys-171 and Glu-172. We found that ECL2-specific mAbs were more efficient than NH2- or MD-antibodies in blocking RANTES or MIP-1beta binding. By contrast, N-terminal mAbs blocked gp120-CCR5 binding more effectively than ECL2 mAbs. Surprisingly, ECL2 mAbs were more potent inhibitors of viral infection than N-terminal mAbs. Thus, the ability to block virus infection did not correlate with the ability to block gp120 binding. Together, these results imply that chemokines and Env bind to distinct but overlapping sites in CCR5, and suggest that the N-terminal domain of CCR5 is more important for gp120 binding while the extracellular loops are more important for inducing conformational changes in Env that lead to membrane fusion and virus infection. Measurements of individual antibody affinities coupled with kinetic analysis of equilibrium binding states also suggested that there are multiple conformational states of CCR5. A previously described mAb, 2D7, was unique in its ability to effectively block both chemokine and Env binding as well as coreceptor activity. 2D7 bound to a unique antigenic determinant in the first half of ECL2 and recognized a far greater proportion of cell surface CCR5 molecules than the other mAbs examined. Thus, the epitope recognized by 2D7 may represent a particularly attractive target for CCR5 antagonists.  (+info)

Antiidiotypic antibody recognizes an amiloride binding domain within the alpha subunit of the epithelial Na+ channel. (61/31542)

We previously raised an antibody (RA6.3) by an antiidiotypic approach which was designed to be directed against an amiloride binding domain on the epithelial Na+ channel (ENaC). This antibody mimicked amiloride in that it inhibited transepithelial Na+ transport across A6 cell monolayers. RA6.3 recognized a 72-kDa polypeptide in A6 epithelia treated with tunicamycin, consistent with the size of nonglycosylated Xenopus laevis alphaENaC. RA6.3 specifically recognized an amiloride binding domain within the alpha-subunit of mouse and bovine ENaC. The deduced amino acid sequence of RA6.3 was used to generate a three-dimensional model structure of the antibody. The combining site of RA6.3 was epitope mapped using a novel computer-based strategy. Organic residues that potentially interact with the RA6.3 combining site were identified by data base screening using the program LUDI. Selected residues docked to the antibody in a manner corresponding to the ordered linear array of amino acid residues within an amiloride binding domain on the alpha-subunit of ENaC. A synthetic peptide spanning this domain inhibited the binding of RA6.3 to alphaENaC. This analysis provided a novel approach to develop models of antibody-antigen interaction as well as a molecular perspective of RA6.3 binding to an amiloride binding domain within alphaENaC.  (+info)

A structure-function study of the C2 domain of cytosolic phospholipase A2. Identification of essential calcium ligands and hydrophobic membrane binding residues. (62/31542)

The C2 domain of cytosolic phospholipase A2 (cPLA2) is involved in the Ca2+-dependent membrane binding of this protein. To identify protein residues in the C2 domain of cPLA2 essential for its Ca2+ and membrane binding, we selectively mutated Ca2+ ligands and putative membrane-binding residues of cPLA2 and measured the effects of mutations on its enzyme activity, membrane binding affinity, and monolayer penetration. The mutations of five Ca2+ ligands (D40N, D43N, N65A, D93N, N95A) show differential effects on the membrane binding and activation of cPLA2, indicating that two calcium ions bound to the C2 domain have differential roles. The mutations of hydrophobic residues (F35A, M38A, L39A, Y96A, Y97A, M98A) in the calcium binding loops show that the membrane binding of cPLA2 is largely driven by hydrophobic interactions resulting from the penetration of these residues into the hydrophobic core of the membrane. Leu39 and Val97 are fully inserted into the membrane, whereas Phe35 and Tyr96 are partially inserted. Finally, the mutations of four cationic residues in a beta-strand (R57E/K58E/R59E/R61E) have modest and negligible effects on the binding of cPLA2 to zwitterionic and anionic membranes, respectively, indicating that they are not directly involved in membrane binding. In conjunction with our previous study on the C2 domain of protein kinase C-alpha (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), these results demonstrate that C2 domains are not only a membrane docking unit but also a module that triggers membrane penetration of protein and that individual Ca2+ ions bound to the calcium binding loops play differential roles in the membrane binding and activation of their parent proteins.  (+info)

Does over-the-counter nicotine replacement therapy improve smokers' life expectancy? (63/31542)

OBJECTIVE: To determine the public health benefits of making nicotine replacement therapy available without prescription, in terms of number of quitters and life expectancy. DESIGN: A decision-analytic model was developed to compare the policy of over-the-counter (OTC) availability of nicotine replacement therapy with that of prescription ([symbol: see text]) availability for the adult smoking population in the United States. MAIN OUTCOME MEASURES: Long-term (six-month) quit rates, life expectancy, and smoking attributable mortality (SAM) rates. RESULTS: OTC availability of nicotine replacement therapy would result in 91,151 additional successful quitters over a six-month period, and a cumulative total of approximately 1.7 million additional quitters over 25 years. All-cause SAM would decrease by 348 deaths per year and 2940 deaths per year at six months and five years, respectively. Relative to [symbol: see text] nicotine replacement therapy availability, OTC availability would result in an average gain in life expectancy across the entire adult smoking population of 0.196 years per smoker. In sensitivity analyses, the benefits of OTC availability were evident across a wide range of changes in baseline parameters. CONCLUSIONS: Compared with [symbol: see text] availability of nicotine replacement therapy, OTC availability would result in more successful quitters, fewer smoking-attributable deaths, and increased life expectancy for current smokers.  (+info)

Hydrophobic hydration of amphipathic peptides. (64/31542)

Biomolecular surfaces and interfaces are commonly found with apolar character. The hydrophobic effect thus plays a crucial role in processes involving association with biomolecular surfaces in the cellular environment. By computer simulation, we compared the hydrogen bonding structures and energetics of the proximal hydration shells of the monomer and dimer from a recent study of an extrinsic membrane peptide, melittin. The two peptides were studied in their amphipathic alpha-helical forms, which possess extended hydrophobic surfaces characterized by different topography. The topography of the peptide-water interface was found to be critical in determining the enthalpic nature of hydrophobic hydration. This topographical dependence has far-reaching implications in the regulation of bioactivities in the presence of amphipathicity. This result also engenders reconsideration of the validity of using free energy parameters that depend solely on the chemical nature of constituent moieties in characterizing hydrophobic hydration of proteins and biomolecules in general.  (+info)