Diversity of T cell repertoire shaped by a single peptide ligand is critically affected by its amino acid residue at a T cell receptor contact. (41/723)

T cell differentiation in the thymus is driven by positive selection through the interaction of alphabeta T cell receptors (TCRs) with self-peptides bound to self-major histocompatibility complex molecules, yet the influence of the peptide sequence on this process remains unknown. To address this issue, we have compared CD4(+) T cell differentiation between two sets of mouse lines in which MHC class II I-A(b) molecules are occupied with either Ealpha chain-derived peptide ((p)Ealpha) or its variant, (p)60K, with one amino acid substitution from leucine to lysine at P5 residue of TCR contacts. Here, we show that despite the comparable expression of I-A(b)-peptide complex in the thymus, this substitution from leucine to lysine affects efficiency of positive selection, resulting in extremely small numbers of CD4(+) T cells to be selected to mature on I-A(b)-(p)60K complex. Furthermore, we show that, although I-A(b)-(p)Ealpha complex selects diverse T cells, T cell repertoire shaped by I-A(b)-(p)60K complex is markedly constrained. Our findings thus suggest that positive selection is both specific and degenerate, depending on the amino acid residues at TCR contacts of the selecting self-peptides.  (+info)

T cell receptor (TCR)-mediated repertoire selection and loss of TCR vbeta diversity during the initiation of a CD4(+) T cell response in vivo. (42/723)

We recently described a novel way to isolate populations of antigen-reactive CD4(+) T cells with a wide range of reactivity to a specific antigen, using immunization with a fixed dose of nominal antigen and FACS((R)) sorting by CD4(high) expression. Phenotypic, FACS((R)), functional, antibody inhibition, and major histocompatibility complex-peptide tetramer analyses, as well as T cell receptor Vbeta sequence analyses, of the antigen-specific CD4(high) T cell populations demonstrated that a diverse sperm whale myoglobin 110-121-reactive CD4(+) T cell repertoire was activated at the beginning (day 3 after immunization) of the immune response. Within 6 d of immunization, lower affinity clones were lost from the responding population, leaving an expanded population of oligoclonal, intermediate affinity (and residual high affinity) T cells. This T cell subset persisted for at least 4 wk after immunization and dominated the secondary immune response. These data provide evidence that CD4(+) T cell repertoire selection occurs early in the immune response in vivo and suggest that persistence and expansion of a population of oligoclonal, intermediate affinity T cells is involved in CD4(+) T cell memory.  (+info)

Antibody repertoire development in fetal and neonatal piglets. II. Characterization of heavy chain complementarity-determining region 3 diversity in the developing fetus. (43/723)

Since the actual combinatorial diversity in the V(H) repertoire in fetal piglets represents <1% of the potential in mice and humans, we wondered whether 1) complementarity-determining region 3 (CDR3) diversity was also restricted; 2) CDR3 diversity changed with fetal age; and 3) to what extent CDR3 contributed to the preimmune VDJ repertoire. CDR3 spectratyping and sequence analyses of 213 CDR3s recovered from >30 fetal animals of different ages showed that >95% of VDJ diversity resulted from junctional diversity. Unlike sheep and cattle, somatic hypermutation does not contribute to the repertoire. These studies also revealed that 1) N region additions are as extensive in VDJ rearrangements recovered at 30 days as those in late term fetuses, suggesting that TdT is fully active at the onset of VDJ rearrangement; 2) nearly 90% of all rearrangement are in-frame until late gestation; 3) the oligoclonal CDR3 spectratype of 30-day fetal liver becomes polyclonal by 50 days, while this change occurs much later in spleen; 4) there is little evidence of individual variation in CDR3 spectratype or differences in spectratype among lymphoid tissues with the exception of the thymus; and 4) there is a tendency for usage of the most J(H) proximal D(H) segment (D(H)B) to decrease in older fetuses and for the longer D(H) segment to be trimmed to the same length as the shorter D(H) when used in CDR3. These findings suggest that in the fetal piglet, highly restricted combinatorial diversity and the lack of somatic mutation are compensated by early onset of TdT activity and other mechanisms that contribute to CDR3 junctional diversity.  (+info)

Normal B cells express 51p1-encoded Ig heavy chains that are distinct from those expressed by chronic lymphocytic leukemia B cells. (44/723)

51p1 is an allele of V(H)1-69 that frequently is expressed by chronic lymphocytic leukemia (CLL) B cells with little or no somatic mutation. The rearranged 51p1 genes expressed by CLL B cells have a distinctive use of D segments D3-3/DXP4 and D3-10/DXP'1, a favored use of J(H)6, and a longer third complementarity-determining region than the rearranged Ig genes used by CLL B cells that express V(H)1 genes other than V(H)1-69. We examined the 51p1-encoded Ig expressed by blood B cells of healthy donors. In contrast to the infrequent use of J(H)4 by 51p1-expressing CLL (e.g., 4%), 36% of the rearranged 51p1 sequences from normal blood B cells used J(H)4. Furthermore, the D segment use of the rearranged 51p1 sequences from normal blood B cells was not restricted, but reflected the D segment use of nonselected IgH of normal B cells. Finally, the mean length of the third complementarity-determining region for the 51p1 genes of normal blood B cells was 14.6 +/- 4.3 (SD) codons. This is significantly shorter than that noted for 51p1-expressing CLL B cells (18.8 +/- 3.2; p < 0.0001, n = 51). This study demonstrates that the 51p1-encoded IgH expressed in CLL are not representative of the 51p1-encoded IgH expressed by normal blood B cells, indicating that CLL B cells express IgH that are distinctive from those found in the normal adult blood B cell repertoire.  (+info)

Kabat Database and its applications: future directions. (45/723)

The Kabat Database was initially started in 1970 to determine the combining site of antibodies based on the available amino acid sequences. The precise delineation of complementarity determining regions (CDR) of both light and heavy chains provides the first example of how properly aligned sequences can be used to derive structural and functional information of biological macromolecules. This knowledge has subsequently been applied to the construction of artificial antibodies with prescribed specificities, and to many other studies. The Kabat database now includes nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules, and other proteins of immunological interest. While new sequences are continually added into this database, we have undertaken the task of developing more analytical methods to study the information content of this collection of aligned sequences. New examples of analysis will be illustrated on a yearly basis. The Kabat Database and its applications are freely available at http://immuno.bme.nwu.edu.  (+info)

Evaluation of B cell lymphoid infiltrates in bone marrow biopsies by morphology, immunohistochemistry, and molecular analysis. (46/723)

AIMS: Morphological criteria to distinguish between reactive and neoplastic B cell lymphocytoid infiltrates in trephines have been defined but are not always reliable. Polymerase chain reaction (PCR) analysis of the CDR3 region of the immunoglobulin heavy chain (IgH) gene which, by demonstrating monoclonality, can provide additional arguments in favour of lymphoid malignancy is now frequently used for the detection and follow up of B cell lymphoma (NHL). The aim of this study was to investigate the usefulness of morphological findings in bone marrow biopsies in comparison with data obtained by PCR analysis. METHODS: Eighty nine bone marrow biopsies displaying lymphoid infiltrates were evaluated by morphology and immunohistochemistry as well as by CDR3-PCR using consensus framework 3 (FRW3) and JH primers. RESULTS: The presence of a clonal B cell proliferation was demonstrated by PCR analysis in 45 biopsies, including 21 samples considered to be positive, 17 to be suspicious, and seven to be negative by morphology. In the remaining 44 trephines we found no evidence of clonality, although 12 of these trephines were thought to be positive by morphology. CONCLUSIONS: These results, revealing an incomplete correlation between CDR3-PCR data and immunomorphological findings, indicate that molecular analysis may be more sensitive and specific in general. However, false negative PCR results do occur, which emphasises the necessity to combine both diagnostic tools in the evaluation of lymphoid infiltrates.  (+info)

Longitudinal analysis of T-cell receptor gene use by CD8(+) T cells in early human immunodeficiency virus infection in patients receiving highly active antiretroviral therapy. (47/723)

The effects of early antiretroviral therapy on the peripheral CD8(+) T-cell population were assessed by sequentially determining the T-cell receptor (TCR) repertoire complexity in a cohort of 15 individuals recently diagnosed with human immunodeficiency virus infection. Analysis was based on quantitative TCR variable B gene (TCRBV) usage and complementary-determining region 3 length assessment. Repertories were assessed at baseline and at weeks 2, 4, 12, 24, and 72 after initiation of therapy. Early administration of highly active antiretroviral therapy has a positive effect on the preservation and homeostasis of the CD8(+) cell repertoire. Nevertheless, differences from average baseline and control TCR profiles and initial development of repertoire perturbations were observed. The findings suggest that additional therapeutic protocols will be required during primary infection to significantly prevent long-term erosion of the T-cell-mediated immune response.  (+info)

In vivo selection of T-cell receptor junctional region sequences by HLA-A2 human T-cell lymphotropic virus type 1 Tax11-19 peptide complexes. (48/723)

Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8(+) T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vbeta CDR3 region of clonally expanded CD8(+) T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.  (+info)