Classical and alternative pathway complement activation are not required for reactive systemic AA amyloid deposition in mice. (73/449)

During induction of reactive systemic amyloid A protein (AA) amyloidosis in mice, either by chronic inflammation or by severe acute inflammation following injection of amyloid enhancing factor, the earliest deposits form in a perifollicular distribution in the spleen. Because the splenic follicular localization of immune complexes and of the scrapie agent are both complement dependent in mice, we investigated the possible complement dependence of AA amyloid deposition. In preliminary experiments, substantial depletion of circulating C3 by cobra venom factor had little effect on experimental amyloid deposition. More importantly, mice with targeted deletion of the genes for C1q or for both factor B and C2, and therefore unable to sustain activation, respectively, of either the classical complement pathway or both the classical and alternative pathways, showed amyloid deposition similar to wild type controls. Complement activation by either the classical or alternative pathways is thus not apparently necessary for the experimental induction of systemic AA amyloid in mice.  (+info)

Structural and functional characterization of complement C4 and C1s-like molecules in teleost fish: insights into the evolution of classical and alternative pathways. (74/449)

There is growing evidence that certain components of complement systems in lower vertebrates are promiscuous in their modes of activation through the classical or alternative pathways. To better understand the evolution of the classical pathway, we have evaluated the degree of functional diversification of key components of the classical and alternative pathways in rainbow trout, an evolutionarily relevant teleost species. Trout C4 was purified in two distinct forms (C4-1 and C4-2), both exhibiting the presence of a thioester bond at the cDNA and protein levels. C4-1 and C4-2 bound in a similar manner to trout IgM-sensitized sheep erythrocytes in the presence of Ca(2+)/Mg(2+), and both C4 molecules equally restored the classical pathway-mediated hemolytic activity of serum depleted of C3 and C4. Reconstitution of activity was dependent on the presence of both C3-1 and C4-1/C4-2 and on the presence of IgM bound to the sheep erythrocytes. A C1s-like molecule was shown to cleave specifically purified C4-1 and C4-2 into C4b, while failing to cleave trout C3 molecules. The C1s preparation was unable to cleave trout factor B/C2 when added in the presence of C3b or C4b molecules. Our results show a striking conservation of the mode of activation of the classical pathway. We also show that functional interchange between components of the classical and alternative pathway in teleosts is more restricted than was anticipated. These data suggest that functional diversification between the two pathways must have occurred shortly after the gene duplication that gave rise to the earliest classical pathway molecules.  (+info)

Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. (75/449)

The lectin complement pathway in innate immunity is closely related to the classical complement pathway in adaptive immunity, with respect to the structures and functions of their components. Both pathways are initiated by complexes consisting of collagenous proteins and serine proteases of the mannose-binding lectin (MBL)-associated serine protease (MASP)/C1r/C1s family. It has been speculated that the classical pathway emerged after the lectin pathway, and that the activation mechanism of the latter was partially conserved. The classical and lectin pathways can be traced back to at least cartilaginous fish and ascidian (urochordata), respectively. To elucidate the evolution of the complement system, we isolated and characterized a GlcNAc-binding lectin from sera of lamprey (agnathans), the most primitive vertebrate that lacks the classical pathway. Lamprey GlcNAc-binding lectin was an oligomer consisting of 24-kDa subunits. cDNA and phylogenetic analyses revealed that the lamprey GlcNAc-binding lectin is an orthologue of mammalian C1q, a collagenous subcomponent of the first component involved in binding to immunoglobulins in the classical pathway. Lamprey C1q copurified with MASP-A, a serine protease of the MASP/C1r/C1s family, which exhibited proteolytic activity against lamprey C3. Surface plasmon resonance analysis showed that lamprey C1q specifically bound to GlcNAc, but not various other carbohydrates tested. These results suggest that C1q may have emerged as a lectin and may have functioned as an initial recognition molecule of the complement system in innate immunity before the establishment of adaptive immunity such as immunoglobulins in the cartilaginous fish.  (+info)

Inhibition of complement activation by a secreted Staphylococcus aureus protein. (76/449)

Staphylococcus aureus can cause a variety of acute and chronic diseases. The ability of S. aureus to cause persistent infections has been linked to its ability to evade or inactivate host immune responses. We have identified a secreted 19-kDa protein produced by S. aureus that binds to the complement protein C3. N-terminal sequencing of this protein identified it as the extracellular fibrinogen-binding protein (Efb). In this study, we demonstrate that Efb can bind to the alpha -chain of C3 and inhibit both the classical and alternative pathways of complement activation. In addition, we show that Efb can inhibit complement-mediated opsonophagocytosis in a dose-dependent manner and that Efb inhibits complement activity by blocking deposition of C3 or by preventing further complement activation beyond C3b. These data suggest that Efb is a virulence factor involved in facilitating persistent S. aureus infections by interfering with complement activity in vivo.  (+info)

Immune complex-stimulated production of interleukin-12 in peripheral blood mononuclear cells is regulated by the complement system. (77/449)

Immune complexes (IC) can induce cytokine production in vitro. While immune aggregates (IA) consisting of heat-aggregated gamma globulin (HAGG) as model IC increased interleukin (IL)-10 levels in cell cultures with native human serum, IL-12p40/p70 production was inhibited. Three series of experiments suggested that the effects of IA on IL-12 production depended on a functionally intact complement system: (1) heat-inactivation of serum inverted the inhibitory effect of IA on IL-12p40/p70 production; (2) IA-induced IL-12p40 production in a C4 deficient serum was lowered by addition of C4; and (3) addition of the peptide compstatin, which blocks C3 activation, mimicked the effects of heat inactivation on IL-12p40 levels. Neutralization of IL-12 resulted in modestly increased IL-10 levels, while neutralization of IL-10 had no effects on IL-12p40 production. IA-induced production of IL-10 was partially blocked by anti-Fcgamma RII antibodies, whereas Fcgamma R or CR blockade had no effect on IL-12p40 production. IC and local or systemic complement activation characterize rheumatoid arthritis, systemic lupus erythematosus and many malignancies. Different and complement-dependent effects on the production of IL-10 and IL-12 can be of importance in these diseases, where control of the complement system might be a way to direct IC-induced cytokine production in either a type 1 or type 2 direction.  (+info)

Anti-complementary activity of triterpenoides from fruits of Zizyphus jujuba. (78/449)

In order to determine on the anti-complement activity of triterpenes, following eleven triterpenoides were isolated from the fruits of the Zizyphus jujuba MILL: ceanothane-type triterpenes: colubrinic acid (1), zizyberenalic acid (11); lupane-type triterpenes: alphitolic acid (2), 3-O-cis-p-coumaroyl alphitolic acid (3), 3-O-trans-p-coumaroyl alphitolic acid (4), betulinic acid (7), betulonic acid (9); and oleanane-type triterpenes: 3-O-cis-p-coumaroyl maslinic acid (5), 3-O-trans-p-coumaroyl maslinic acid (6), oleanolic acid (8), oleanonic acid (10). These compounds were examined for their anti-complement activity against the classical pathway of the complement system. Among them, compounds 5, 6, and 8 exhibited significant anti-complement activity with IC(50) values of 101.4, 143.9, and 163.4 microM, respectively, whereas the ceanothane-type and the lupane-type triterpenes were inactive. This suggests that the oleanane-structure plays an important role in inhibiting the hemolytic activity of human serum against erythrocytes.  (+info)

Antibodies directed against O-acetylated sialoglycoconjugates accelerate complement activation in Leishmania donovani promastigotes. (79/449)

BACKGROUND: An enhanced presence of 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) triggers the alternate pathway (AP) in Indian visceral leishmaniasis (VL). Antibodies directed against these epitopes are present in high titers. The biological relevance of these antibodies, with regard to activation of the classical pathway (CP), was investigated. METHODS: Complement activators were affinity purified, complement activation via the CP, AP, and lectin-mediated complement pathway was measured by use of an anti-C3 radio-binding assay, and the number of C3 molecules was quantitated by Scatchard analysis. Cell death induced via the complement pathways was measured by use of MTT (tetrazolium salt 3- [4, 5-dimethylthiazol-2-yl] -2, 5-diphenyltetrazolium bromide) assay, and uptake of propidium iodide (PI) was measured by flow cytometry. RESULTS: Anti-O-AcSGs from both healthy donors and patients with VL elicited C3 deposition as early as 3 min, which triggered parasite lysis, as demonstrated by use of MTT assay and corroborated by the high rate of uptake of PI. Analysis of complement activation by mannan-binding lectin and C-reactive protein demonstrated their negligible contribution during the 3-min time frame. CONCLUSIONS: Anti-O-AcSGs were identified as an important source of CP activation under normal physiological conditions, suggesting that they play a role in conferring host protection against parasite infection.  (+info)

The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. (80/449)

Complement activation with formation of biologically potent mediators like C5a and the terminal C5b-9 complex (TCC) contributes essentially to development of inflammation and tissue damage in a number of autoimmune and inflammatory conditions. A particular role for complement in the ischaemia/reperfusion injury of the heart, skeletal muscle, central nervous system, intestine and kidney has been suggested from animal studies. Previous experiments in C3 and C4 knockout mice suggested an important role of the classical or lectin pathway in initiation of complement activation during intestinal ischaemia/reperfusion injury while later use of factor D knockout mice showed the alternative pathway to be critically involved. We hypothesized that alternative pathway amplification might play a more critical role in classical pathway-induced C5 activation than previously recognized and used pathway-selective inhibitory mAbs to further elucidate the role of the alternative pathway. Here we demonstrate that selective blockade of the alternative pathway by neutralizing factor D in human serum diluted 1 : 2 with mAb 166-32 inhibited more than 80% of C5a and TCC formation induced by solid phase IgM and solid- and fluid-phase human aggregated IgG via the classical pathway. The findings emphasize the influence of alternative pathway amplification on the effect of initial classical pathway activation and the therapeutic potential of inhibiting the alternative pathway in clinical conditions with excessive and uncontrolled complement activation.  (+info)