The human complement regulator factor H binds pneumococcal surface protein PspC via short consensus repeats 13 to 15. (49/741)

The innate ability of Streptococcus pneumoniae to resist complement activation and complement-mediated phagocytosis may be a direct consequence of the ability of the bacteria to bind components of the complement regulatory system. One such component, factor H (fH), is a crucial fluid-phase negative regulator of the alternative pathway of complement and is utilized by a number of pathogenic organisms to resist complement attack. The pneumococcal surface protein C (PspC [also known as CbpA] and SpsA) has been shown to bind fH, although the exact binding site within one or more of the 20 short consensus repeats (SCRs) of the molecule is not known. The purpose of the current study was to map specific SCRs on fH responsible for this binding. Initial experiments utilizing type 2 pneumococcal strain D39 and its isogenic PspC-negative derivative (D39/pspC mutant) showed that fH binding was PspC dependent. A purified recombinant protein derivative of PspC that lacked the proline-rich region (PspCDeltaPro) had a reduced binding efficiency for fH, thereby directly showing the importance of this region for the fH interaction. We have specifically shown by inhibition experiments that SCRs responsible for heparin and C3b binding of fH are not involved in binding PspC and the interaction between fH and PspC is largely hydrophobic, since no inhibition was observed in the presence of high concentrations of NaCl. Construction of SCR proteins encompassing the whole fH molecule showed that SCRs 8 to 15 (SCR 8-15) mediated binding to PspC. Further localization experiments revealed that SCR 13 and SCR 15 were required for full binding, although partial binding was retained when either SCR was removed.  (+info)

Complement inhibitor factor H binding to Lyme disease spirochetes is mediated by inducible expression of multiple plasmid-encoded outer surface protein E paralogs. (50/741)

Borrelia burgdorferi spirochetes can circumvent the vertebrate host's immune system for long periods of time. B. burgdorferi sensu stricto and B. afzelii, but not B. garinii, bind the complement inhibitor factor H to protect themselves against complement-mediated opsonophagocytosis and killing. We found that factor H binding and complement resistance are due to inducible expression of a wide repertoire of outer surface protein E (OspE) lipoproteins variably called OspE, p21, ErpA, and ErpP. Individual Borrelia strains carry multiple plasmid-encoded OspE paralogs. Together the OspE homologs were found to constitute an array of proteins that bind factor H via multiple C-terminal domains that are exposed outwards from the Borrelial surface. Charged residue substitutions in the key binding regions account for variations between OspE family members in the optimal binding pH, temperature, and ionic strength. This may help the spirochetes to adapt into various host environments. Our finding that multiple plasmid-encoded OspE proteins act as virulence factors of Borrelia can provide new tools for the prevention and treatment of borreliosis.  (+info)

Acquisition of regulators of complement activation by Streptococcus pyogenes serotype M1. (51/741)

Opsonization of bacteria by complement proteins is an important component of the immune response. The pathogenic bacterium Streptococcus pyogenes has evolved multiple mechanisms for the evasion of complement-mediated opsonization. One mechanism involves the binding of human regulators of complement activation such as factor H (FH) and FH-like protein 1 (FHL-1). Acquisition of these regulatory proteins can limit deposition of the opsonin C3b on bacteria, thus decreasing the pathogen's susceptibility to phagocytosis. Binding of complement regulatory proteins by S. pyogenes has previously been attributed to the streptococcal M and M-like proteins. Here, we report that the S. pyogenes cell surface protein Fba can mediate binding of FH and FHL-1. We constructed mutant derivatives of S. pyogenes that lack Fba, M1 protein, or both proteins and assayed the strains for FH binding, susceptibility to phagocytosis, and C3 deposition. Fba expression was found to be sufficient for binding of purified FH as well as for binding of FH and FHL-1 from human plasma. Plasma adsorption experiments also revealed that M1(+) Fba(+) streptococci preferentially bind FHL-1, whereas M1(-) Fba(+) streptococci have similar affinities for FH and FHL-1. Fba was found to contribute to the survival of streptococci incubated with human blood and to inhibit C3 deposition on bacterial cells. Streptococci harvested from log-phase cultures readily bound FH, but binding was greatly reduced for bacteria obtained from stationary-phase cultures. Bacteria cultured in the presence of the protease inhibitor E64 maintained FH binding activity in stationary phase, suggesting that Fba is removed from the cell surface via proteolysis. Western analyses confirmed that E64 stabilizes cell surface expression of Fba. These data indicate that Fba is an antiopsonic, antiphagocytic protein that may be regulated by cell surface proteolysis.  (+info)

Cutting edge: localization of the host recognition functions of complement factor H at the carboxyl-terminal: implications for hemolytic uremic syndrome. (52/741)

Incidents of hemolytic uremic syndrome (HUS) include a subset of patients that exhibit mutations in C factor H. These mutations cluster in the C-terminal domains of factor H where previous reports have identified polyanion and C3b-binding sites. In this study, we show that recombinant human factor H with deletions at the C-terminal end of the protein loses the ability to control the spontaneous activation of the alternative C pathway on host-like surfaces. For the pathology of HUS, the findings imply that mutations that disrupt the normal functions of the C-terminal domains prevent host polyanion recognition. The resulting uncontrolled activation of complement on susceptible host tissues appears to be the initiating event behind the acute renal failure of familial HUS patients.  (+info)

Secretion of soluble complement inhibitors factor H and factor H-like protein (FHL-1) by ovarian tumour cells. (53/741)

We observed that the soluble complement regulators factor H and factor H-like protein were abundantly present in ascites samples as well as in primary tumours of patients with ovarian cancer. RT-PCR and immunoblotting analyses showed that the two complement inhibitors were constitutively produced by the ovarian tumour cell lines SK-OV-3 and Caov-3, but not PA-1 or SW626 cells. The amounts of factor H-like protein secreted were equal to those of factor H. This is exceptional, because e.g. in normal human serum the concentration of factor H-like protein is below 1/10th of that of factor H. In ascites samples the mean level of factor H-like protein (130+/-55 microg ml(-1)) was 5.5-fold higher than in normal human serum (24+/-3 microg ml(-1)). Ovarian tumour cells thus preferentially synthesise factor H-like protein, the alternatively spliced short variant of factor H. The tumour cells were found to bind both (125)I-labelled factor H and recombinant factor H-like protein to their surfaces. Surprisingly, the culture supernatants of all of the ovarian tumour cell lines studied, including those of PA-1 and SW626 that did not produce factor H/factor H-like protein, promoted factor I-mediated cleavage of C3b to inactive iC3b. Subsequently, the PA-1 and SW626 cell lines were found to secrete a soluble form of the membrane cofactor protein (CD46). Thus, our studies reveal two novel complement resistance mechanisms of ovarian tumour cells: (i) production of factor H-like protein and factor H and (ii) secretion of soluble membrane cofactor protein. Secretion of soluble complement inhibitors could protect ovarian tumour cells against humoral immune attack and pose an obstacle for therapy with monoclonal antibodies.  (+info)

Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. (54/741)

Genetic studies have demonstrated the involvement of the complement regulator factor H in nondiarrheal, nonverocytotoxin (i.e., atypical) cases of hemolytic uremic syndrome. Different factor H mutations have been identified in 10%-30% of patients with atypical hemolytic uremic syndrome (aHUS), and most of these mutations alter single amino acids in the C-terminal region of factor H. Although these mutations are considered to be responsible for the disease, the precise role that factor H plays in the pathogenesis of aHUS is unknown. We report here the structural and functional characterization of three different factor H proteins purified from the plasma of patients with aHUS who carry the factor H mutations W1183L, V1197A, or R1210C. Structural anomalies in factor H were found only in R1210C carriers; these individuals show, in their plasma, a characteristic high-molecular-weight factor H protein that results from the covalent interaction between factor H and human serum albumin. Most important, all three aHUS-associated factor H proteins have a normal cofactor activity in the proteolysis of fluid-phase C3b by factor I but show very low binding to surface-bound C3b. This functional impairment was also demonstrated in recombinant mutant factor H proteins expressed in COS7 cells. These data support the hypothesis that patients with aHUS carry a specific dysfunction in the protection of cellular surfaces from complement activation, offering new possibilities to improve diagnosis and develop appropriate therapies.  (+info)

The molecular basis for hereditary porcine membranoproliferative glomerulonephritis type II: point mutations in the factor H coding sequence block protein secretion. (55/741)

Porcine membranoproliferative glomerulonephritis type II in piglets of the Norwegian Yorkshire breed is considered the first animal model of human dense deposit disease. Porcine dense deposit disease is caused by the absence of the complement regulator factor H in plasma. Here we report the molecular basis for this absence. Single nucleotide exchanges at position C1590G and T3610G in the coding region of the factor H gene result in amino acid exchanges at nonframework residues L493V and I1166R that are located within SCR 9 and SCR 20, respectively. Apparently the L493V mutation represents a polymorphism whereas the I1166R causes the physiological consequences a block in protein secretion. Expression analysis shows comparable mRNA levels for factor H in liver tissue derived from both affected and healthy animals. In affected piglets, factor H protein is detected in increased amounts in liver cells. Factor H accumulates inside the hepatocytes and is not released as shown by Western blot analysis and immunohistochemistry. These data demonstrate that single amino acid exchanges of two nonframework amino acids either alone or in combination block protein secretion of factor H. This observation is also of interest for other human diseases in which factor H is involved, such as human factor H-associated form of hemolytic uremic syndrome.  (+info)

Complement C3b/C3d and cell surface polyanions are recognized by overlapping binding sites on the most carboxyl-terminal domain of complement factor H. (56/741)

Factor H (FH) is a potent suppressor of the alternative pathway of C in plasma and when bound to sialic acid- or glycosaminoglycan-rich surfaces. Of the three interaction sites on FH for C3b, one interacts with the C3d part of C3b. In this study, we generated recombinant constructs of FH and FH-related proteins (FHR) to define the sites required for binding to C3d. In FH, the C3d-binding site was localized by surface plasmon resonance analysis to the most C-terminal short consensus repeat domain (SCR) 20. To identify amino acids of FH involved in binding to C3d and heparin, we compared the sequences of FH and FHRs and constructed a homology-based molecular model of SCR19-20 of FH. Subsequently, we created an SCR15-20 mutant with substitutions in five amino acids that were predicted to be involved in the binding interactions. These mutations reduced binding of the SCR15-20 construct to both C3b/C3d and heparin. Binding of the wild-type SCR15-20, but not the residual binding of the mutated SCR15-20, to C3d was inhibited by heparin. This indicates that the heparin- and C3d-binding sites are overlapping. Our results suggest that a region in the most C-terminal domain of FH is involved in target recognition by binding to C3b and surface polyanions. Mutations in this region, as recently reported in patients with familial hemolytic uremic syndrome, may lead to indiscriminatory C attack against self cells.  (+info)