Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. (33/52)

A bacterial strain, designated Dant 3-8(T), isolated from the gut of the termite Odontotermes formosanus, was investigated by a polyphasic taxonomic approach. The cells were rod-shaped, Gram-negative, non-pigmented, non-spore-forming and non-fermentative. Phylogenetic analyses using the 16S rRNA gene sequence showed that the strain formed a monophyletic branch towards the periphery of the evolutionary radiation occupied by the genus Comamonas, its closest neighbours being Comamonas testosteroni DSM 50244(T) (96.4 % sequence similarity), Comamonas koreensis KCTC 12005(T) (96.0 %) and Comamonas terrigena DSM 7099(T) (96.2 %). Strain Dant 3-8(T) was clearly distinguished from all of these strains by using phylogenetic analysis, DNA-DNA hybridization, whole-cell protein profiles, fatty acid composition data and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that Dant 3-8(T) represents a novel species in the genus Comamonas, for which the name Comamonas odontotermitis sp. nov. is proposed. The type strain is Dant 3-8(T) (=BCRC 17576(T)=LMG 23579(T)).  (+info)

Nucleotide sequence of plasmid pCNB1 from comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. (34/52)

The nucleotide sequence of a new plasmid pCNB1 from Comamonas sp. strain CNB-1 that degrades 4-chloronitrobenzene (4CNB) was determined. pCNB1 belongs to the IncP-1beta group and is 91,181 bp in length. A total of 95 open reading frames appear to be involved in (i) the replication, maintenance, and transfer of pCNB1; (ii) resistance to arsenate and chromate; and (iii) the degradation of 4CNB. The 4CNB degradative genes and arsenate resistance genes were located on an extraordinarily large transposon (44.5 kb), proposed as TnCNB1. TnCNB1 was flanked by two IS1071 elements and represents a new member of the composite I transposon family. The 4CNB degradative genes within TnCNB1 were separated by various truncated genes and genetic homologs from other DNA molecules. Genes for chromate resistance were located on another transposon that was similar to the Tn21 transposon of the class II replicative family that is frequently responsible for the mobilization of mercury resistance genes. Resistance to arsenate and chromate were experimentally confirmed, and transcriptions of arsenate and chromate resistance genes were demonstrated by reverse transcription-PCR. These results described a new member of the IncP-1beta plasmid family, and the findings suggest that gene deletion and acquisition as well as genetic rearrangement of DNA molecules happened during the evolution of the 4CNB degradation pathway on pCNB1.  (+info)

Responses to arsenate stress by Comamonas sp. strain CNB-1 at genetic and proteomic levels. (35/52)

Comamonas sp. strain CNB-1, a chloronitrobenzene-degrading bacterium, was demonstrated to possess higher arsenate tolerance as compared with the mutant strain CNB-2. pCNB1, a plasmid harboured by CNB-1 but not CNB-2, contained the genetic cluster ars(RPBC)Com, which putatively encodes arsenate-resistance regulator, family II arsenate reductase, arsenite efflux pump and family I arsenate reductase, respectively, in Comamonas strain CNB-1. The arsC-negative Escherichia coli could gain arsenate resistance by transformation with arsPCom or arsCCom, indicating that these two genes might express functional forms of arsenate reductases. Intriguingly, when CNB-1 cells were exposed to arsenate, the transcription of arsPCom and arsCCom was measurable by RT-PCR, but only ArsPCom was detectable at protein level. To explore the proteins responding to arsenate stress, CNB-1 cells were cultured with and without arsenate and differential proteomics was carried out by two-dimensional PAGE (2-DE) and MALDI-TOF MS. A total of 31 differential 2-DE spots were defined upon image analysis and 23 proteins were identified to be responsive specifically to arsenate. Of these spots, 18 were unique proteins. These proteins were identified to be phosphate transporters, heat-shock proteins involved in protein refolding, and enzymes participating in carbon and energy metabolism.  (+info)

Comamonas composti sp. nov., isolated from food waste compost. (36/52)

 (+info)

Enzymatic properties of terephthalate 1,2-dioxygenase of Comamonas sp. strain E6. (37/52)

The tphA1 II and tphA2 II A3 II genes of Comamonas sp. E6 perhaps code for the terephthalate (TPA) 1,2-dioxygenase (TPADO). To characterize E6 TPADO, these genes were expressed in a His-tagged form in Escherichia coli, and the recombinant proteins were purified. TPADO activity was reconstituted from TphA1 II and TphA2 II A3 II, indicating that TPADO consists of a reductase (TphA1 II) and a terminal oxygenase component (TphA2 II and TphA3 II). TphA1(II) contains FAD, and the presence of a plant-type [2Fe-2S] cluster was suggested. These results indicate that TPADO is a class IB aromatic ring-hydroxylating dioxygenase. NADH and NADPH were effective as electron donors for TphA1 II, but NADPH appeared to be the physiological electron donor, based on the kinetic parameters. TPADO showed activity only toward TPA, and Fe2+ was required for it. The Km values for TPA and the Vmax were determined to be 72+/-6 microM and 9.87+/-0.06 U/mg respectively.  (+info)

Characterization of the isophthalate degradation genes of Comamonas sp. strain E6. (38/52)

 (+info)

Comamonas zonglianii sp. nov., isolated from phenol-contaminated soil. (39/52)

 (+info)

Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells. (40/52)

Single-chamber microbial fuel cells (MFCs), inoculated with anaerobic sludge and continuously run with two kinds of organic wastewater influents, were systemically investigated. The diversity of microbes, determined by 16S rDNA analysis, was analyzed on three anodes under different conditions. One anode was in a closed circuit in synthetic wastewater containing glucose. The other two anodes, in open or closed circuits, were fed effluent from an anaerobic reactor treating starch wastewater. The chemical oxygen demand (COD) removal efficiency was about 70%, and the exported voltages were about 450 mV. The 16S rDNA molecular clones of microbes on anode surfaces showed significant changes in Eubacterial structure under different conditions. gamma-Proteobacteria and the high G+C gram-positive groups were predominant in the synthetic wastewater, while epsilon-Proteobacteria predominated in the anaerobic reactor effluent. Known exoelectrogenic bacterial species composition also changed greatly depending on substrate. On the artificial substrate, 28% of the bacterial sequences were affiliated with Aeromonas, Pseudomonas, Geobacter, and Desulfobulbus. On the anaerobic effluent, only 6% were affiliated with Geobacter or Clostridium. Because only a few exoelectrogenic bacteria from MFCs have been directly isolated and studied, we compared the community structures of two bacterial anodes, in open and closed circuits, under the same substrate of anaerobic effluent in order to identify additional exoelectrogenic bacterial strains. Alcaligenes monasteriensis, Comamonas denitrificans, and Dechloromonas sp. were found to be potential exoelectrogenic bacteria worthy of further research.  (+info)