Integrins alpha(6A)beta 1 and alpha(6B)beta 1 promote different stages of chondrogenic cell differentiation. (9/149)

The differentiation of chondrocytes and of several other cell types is associated with a switch from the alpha(6B) to the alpha(6A) isoform of the laminin alpha(6)beta(1) integrin receptor. To define whether this event plays a functional role in cell differentiation, we used an in vitro model system that allows chick chondrogenic cells to remain undifferentiated when cultured in monolayer and to differentiate into chondrocytes when grown in suspension culture. We report that: (i) upon over-expression of the human alpha(6B), adherent chondrogenic cells differentiate to stage I chondrocytes (i.e. increased type II collagen, reduced type I collagen, fibronectin, alpha(5)beta(1) and growth rate, loss of fibroblast morphology); (ii) the expression of type II collagen requires the activation of p38 MAP kinase; (iii) the over-expression of alpha(6A) induces an incomplete differentiation to stage I chondrocytes, whereas no differentiation was observed in alpha(5) and mock-transfected control cells; (iv) a prevalence of the alpha(6A) subunit is necessary to stabilize the differentiated phenotype when cells are transferred to suspension culture. Altogether, these results indicate a functional role for the alpha(6B) to alpha(6A) switch in chondrocyte differentiation; the former promotes chondrocyte differentiation, and the latter is necessary in stabilizing the differentiated phenotype.  (+info)

Basic helix-loop-helix protein DEC1 promotes chondrocyte differentiation at the early and terminal stages. (10/149)

The mRNA level of basic helix-loop-helix transcription factor DEC1 (BHLHB2)/Stra13/Sharp2 was up-regulated during chondrocyte differentiation in cultures of ATDC5 cells and growth plate chondrocytes, and in growth plate cartilage in vivo. Forced expression of DEC1 in ATDC5 cells induced chondrogenic differentiation, and insulin increased this effect of DEC1 overexpression. Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) suppressed DEC1 expression and the differentiation of ATDC5 cells, but DEC1 overexpression antagonized this inhibitory action of PTH/PTHrP. Transforming growth factor-beta or bone morphogenetic protein-2, as well as insulin, induced DEC1 expression in ATDC5 cultures where it induced chondrogenic differentiation. In pellet cultures of bone marrow mesenchymal stem cells exposed to transforming growth factor-beta and insulin, DEC1 was induced at the earliest stage of chondrocyte differentiation and also at the hypertrophic stage. Overexpression of DEC1 in the mesenchymal cells induced the mRNA expressions of type II collagen, Indian hedgehog, and Runx2, as well as cartilage matrix accumulation; overexpression of DEC1 in growth plate chondrocytes at the prehypertrophic stage increased the mRNA levels of Indian hedgehog, Runx2, and type X collagen, and also increased alkaline phosphatase activity and mineralization. To our knowledge, DEC1 is the first transcription factor that can promote both chondrogenic differentiation and terminal differentiation.  (+info)

Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. (11/149)

Evidence exists that cells of mesenchymal origin show a differentiation plasticity that depends on their differentiation state. We used in vitro differentiation of embryonic stem cells through embryoid bodies as a model to analyze chondrogenic and osteogenic differentiation because embryonic stem cells recapitulate early embryonic developmental phases during in vitro differentiation. Here, we show that embryonic stem cells differentiate into chondrocytes, which progressively develop into hypertrophic and calcifying cells. At a terminal differentiation stage, cells expressing an osteoblast-like phenotype appeared either by transdifferentiation from hypertrophic chondrocytes or directly from osteoblast precursor cells. Chondrocytes isolated from embryoid bodies initially dedifferentiated in culture but later re-expressed characteristics of mature chondrocytes. The process of redifferentiation was completely inhibited by transforming growth factor beta3. In clonal cultures of chondrocytes isolated from embryoid bodies, additional mesenchymal cell types expressing adipogenic properties were observed, which suggests that the subcultured chondrocytes indeed exhibit a certain differentiation plasticity. The clonal analysis confirmed that the chondrogenic cells change their developmental fate at least into the adipogenic lineage. In conclusion, we show that chondrocytic cells are able to transdifferentiate into other mesenchymal cells such as osteogenic and adipogenic cell types. These findings further strengthen the view that standardized selection strategies will be necessary to obtain defined cell populations for therapeutic applications.  (+info)

An enhancer complex confers both high-level and cell-specific expression of the human type X collagen gene. (12/149)

Type X collagen expression is restricted to hypertrophic chondrocytes in the endochondral growth plate. Transient transfection of reporter constructs containing the human collagen X promoter into primary growth plate chondrocytes identified a cis-acting positive regulatory DNA element(s) that has cell-specific enhancer properties and binds a nuclear protein expressed specifically in growth plate chondrocytes. Functional disruption of this region results in a significant reduction in the activation of reporter gene transcription. The identified enhancer is a major element controlling both high-level and cell-specific expression of type X collagen gene.  (+info)

Glucocorticoid effects on chondrogenesis, differentiation and apoptosis in the murine ATDC5 chondrocyte cell line. (13/149)

Glucocorticoids (GC) are used extensively in children and may cause growth retardation, which is in part due to the direct effects of GC on the growth plate. We characterised the ATDC5 chondrocyte cell line, which mimics the in vivo process of longitudinal bone growth, to examine the effects of dexamethasone (Dex) and prednisolone (Pred) during two key time points in the chondrocyte life cycle - chondrogenesis and terminal differentiation. Additionally, we studied the potential for recovery following Dex exposure. During chondrogenesis, Dex and Pred exposure at 10(-8) M, 10(-7) M and 10(-6) M resulted in a significant mean reduction in cell number (28% vs 20%), cell proliferation (27% vs 24%) and proteoglycan synthesis (47% vs 43%) and increased alkaline phosphatase (ALP) activity (106% vs 62%), whereas the incidence of apoptosis was unaltered. Minimal effects were noted during terminal differentiation with both GC although all concentrations of Dex lowered apoptotic cell number. To assess catch-up growth the cells were incubated for a total of 14 days which included 1, 3, 7, 10 or 14 days exposure to 10(-6) M Dex, prior to the recovery period. Recovery of proteoglycan synthesis was irreversibly impaired following just one day exposure to Dex. Although cell number showed a similar pattern, significant impairment was only achieved following 14 days exposure. Irreversible changes in ALP activity were only noticed following 10 days exposure to Dex. In conclusion, GC have maximal effects during chondrogenesis; Dex is more potent than Pred and cells exposed to Dex recover but this may be restricted due to differential effects of GC on specific chondrocyte phenotypes.  (+info)

Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. (14/149)

Mutations resulting in a premature termination codon (PTC) are a major cause of inherited disorders, and the majority of these mutant RNA transcripts are subjected to nonsense-mediated mRNA decay (NMD). This RNA surveillance results in reduced mutant allele expression, the extent of which can impact on the clinical severity. The molecular mechanisms of NMD in mammalian cells, its relationship to splicing and translation, downstream sequence elements and binding factors remains only partially understood. Currently there is little information on whether the extent of NMD is gene- or tissue-specific, although nonsense mutation inhibition of RNA splicing has been shown to exhibit some tissue and gene specificity in vitro. Schmid metaphyseal chondrodysplasia results from heterozygous mutations in the gene for collagen X (COL10A1), expressed by the hypertrophic chondrocytes of growth plate cartilage. In one patient a PTC mutation has been shown to result in complete NMD and collagen X haploinsufficiency in cartilage. Here we show that, in this patient, and in another with a different collagen X PTC mutation also leading to complete NMD in cartilage, the mutant mRNAs were not subjected to NMD in non-cartilage cells (lymphoblasts and bone cells). These data suggest that novel RNA surveillance mechanisms may exist in cartilage and that tissue specificity of NMD could be of importance in understanding the molecular pathology of nonsense mutations. Furthermore, the demonstration of collagen X haploinsufficiency in the second patient to be studied at the level of tissue expression, confirms that nonsense mutations leading to complete mutant collagen X mRNA degradation in cartilage is an important molecular cause of SMCD.  (+info)

Distinct transglutaminase 2-independent and transglutaminase 2-dependent pathways mediate articular chondrocyte hypertrophy. (15/149)

Altered chondrocyte differentiation, including development of chondrocyte hypertrophy, mediates osteoarthritis and pathologic articular cartilage matrix calcification. Similar changes in endochondral chondrocyte differentiation are essential for physiologic growth plate mineralization. In both articular and growth plate cartilages, chondrocyte hypertrophy is associated with up-regulated expression of certain protein-crosslinking enzymes (transglutaminases (TGs)) including the unique dual-functioning TG and GTPase TG2. Here, we tested if TG2 directly mediates the development of chondrocyte hypertrophic differentiation. To do so, we employed normal bovine chondrocytes and mouse knee chondrocytes from recently described TG2 knockout mice, which are phenotypically normal. We treated chondrocytes with the osteoarthritis mediator IL-1 beta, with the all-trans form of retinoic acid (ATRA), which promotes endochondral chondrocyte hypertrophy and pathologic calcification, and with C-type natriuretic peptide, an essential factor in endochondral development. IL-1 beta and ATRA induced TG transamidation activity and calcification in wild-type but not in TG2 (-/-) mouse knee chondrocytes. In addition, ATRA induced multiple features of hypertrophic differentiation (including type X collagen, alkaline phosphatase, and MMP-13), and these effects required TG2. Significantly, TG2 (-/-) chondrocytes lost the capacity for ATRA-induced expression of Cbfa1, a transcription factor necessary for ATRA-induced chondrocyte hypertrophy. Finally, C-type natriuretic peptide, which did not modulate TG activity, comparably promoted Cbfa1 expression and hypertrophy (without associated calcification) in TG2 (+/+) and TG2 (-/-) chondrocytes. Thus, distinct TG2-independent and TG2-dependent mechanisms promote Cbfa1 expression, articular chondrocyte hypertrophy, and calcification. TG2 is a potential site for intervention in pathologic calcification promoted by IL-1 beta and ATRA.  (+info)

Partial characterization of cell-type X collagen interactions. (16/149)

Type X collagen is a short-chain non-fibrillar collagen that is deposited exclusively at sites of new bone formation. Although this collagen has been implicated in chondrocyte hypertrophy and endochondral ossification, its precise function remains unclear. One possible function could be to regulate the processes of chondrocyte hypertrophy through direct cell-type X collagen interactions. Adhesions of embryonic chick chondrocytes, and cell lines with known expression of collagen-binding integrins (MG63 and HOS), were assayed on chick type X collagen substrates, including the native, heat-denatured and pepsin-digested collagen, and the isolated C-terminal non-collagenous (NC1) domain. Type X collagen supported the greatest level of adhesion for all cell types tested. The involvement of the alpha2beta1 integrin in type X collagen-cell interaction was demonstrated by adhesion studies in the presence of Mg(2+) and Ca(2+) ions and integrin-function-blocking antibodies. Cells expressing alpha2beta1 integrin (chick chondrocytes and MG63 cells) also adhered to heat-denatured type X collagen and the isolated NC1 domain; however, removal of the non-collagenous domains by limited pepsinization of type X collagen resulted in very low levels of adhesion. Both focal contacts and actin stress-fibre formation were apparent in cells plated on type X collagen. The presence of alpha2 and beta1 integrin subunits in isolated chondrocytes and epiphyseal cartilage was also confirmed by immunolocalization. Our results demonstrate, for the first time, that type X collagen is capable of interacting directly with chondrocytes and other cells, primarily via alpha2beta1 integrin. These findings are atypical from the fibrillar collagen-cell interactions via collagen binding integrins in that: (1) the triple-helical conformation is not strictly required for cell adhesion; (2) the NC1 domain is also involved in the adhesion of alpha2beta1-expressing cells. These data form the basis for further studies into the mechanism and biological significance of type X collagen deposition in the growth plate.  (+info)