(1/149) Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study.

OBJECTIVE: Because articular cartilage has limited ability to repair itself, treatment of (osteo)chondral lesions remains a clinical challenge. We aimed to evaluate how well a tissue-engineered cartilage-like implant, derived from chondrocytes cultured in a novel patented, scaffold-free bioreactor system, would perform in minipig knees with chondral, superficial osteochondral, and full-thickness articular defects. DESIGN: For in vitro implant preparation, we used full-thickness porcine articular cartilage and digested chondrocytes. Bioreactors were seeded with 20x10(6) cells and incubated for 3 weeks. Subsequent to culture, tissue cartilage-like implants were divided for assessment of viability, formaldehyde-fixed and processed by standard histological methods. Some samples were also prepared for electron microscopy (TEM). Proteoglycans and collagens were identified and quantified by SDS-PAGE gels. For in vivo studies in adult minipigs, medial parapatellar arthrotomy was performed unilaterally. Three types of defects were created mechanically in the patellar groove of the femoral condyle. Tissue-engineered cartilage-like implants were placed using press-fit fixation, without supplementary fixation devices. Control defects were not grafted. Animals could bear full weight with an unlimited range of motion. At 4 and 24 weeks postsurgery, explanted knees were assessed using the modified ICRS classification for cartilage repair. RESULTS: After 3-4 weeks of bioreactor incubation, cultured chondrocytes developed a 700-microm- to 1-mm-thick cartilage-like tissue. Cell density was similar to that of fetal cartilage, and cells stained strongly for Alcian blue and safranin O. The percentage of viable cells remained nearly constant (approximately 90%). Collagen content was similar to that of articular cartilage, as shown by SDS-PAGE. At explantation, the gross morphological appearance of grafted defects appeared like normal cartilage, whereas controls showed irregular fibrous tissue covering the defect. Improved histologic appearance was maintained for 6 months postoperatively. Although defects were not always perfectly level upon implantation at explanation the implant level matched native cartilage levels with no tissue hypertrophy. Once in place, implants remodelled to tissues with decreased cell density and a columnar organization. CONCLUSIONS: Repair of cartilage defects with a tissue-engineered implant yielded a consistent gross cartilage repair with a matrix predominantly composed of type II collagen up to 6 months after implantation. This initial result holds promise for the use of this unique bioreactor/tissue-engineered implant in humans.  (+info)

(2/149) A dominant interference collagen X mutation disrupts hypertrophic chondrocyte pericellular matrix and glycosaminoglycan and proteoglycan distribution in transgenic mice.

Collagen X transgenic (Tg) mice displayed skeleto-hematopoietic defects in tissues derived by endochondral skeletogenesis.(1) Here we demonstrate that co-expression of the transgene product containing truncated chicken collagen X with full-length mouse collagen X in a cell-free translation system yielded chicken-mouse hybrid trimers and truncated chicken homotrimers; this indicated that the mutant could assemble with endogenous collagen X and thus had potential for dominant interference. Moreover, species-specific collagen X antibodies co-localized the transgene product with endogenous collagen X to hypertrophic cartilage in growth plates and ossification centers; proliferative chondrocytes also stained diffusely. Electron microscopy revealed a disrupted hexagonal lattice network in the hypertrophic chondrocyte pericellular matrix in Tg growth plates, as well as altered mineral deposition. Ruthenium hexamine trichloride-positive aggregates, likely glycosaminoglycans (GAGs)/proteoglycans (PGs), were also dispersed throughout the chondro-osseous junction. These defects likely resulted from transgene co-localization and dominant interference with endogenous collagen X. Moreover, altered GAG/PG distribution in growth plates of both collagen X Tg and null mice was confirmed by a paucity of staining for hyaluronan and heparan sulfate PG. A provocative hypothesis links the disruption of the collagen X pericellular network and GAG/PG decompartmentalization to the potential locus for hematopoietic failure in the collagen X mice.  (+info)

(3/149) Expression of collagen and aggrecan genes in normal and osteoarthritic murine knee joints.

OBJECTIVE: The STR/ort mouse strain develops osteoarthritis (OA) of the medial tibial cartilage whilst CBA mice do not develop this disease. We investigated whether changes occur in the expression of genes encoding major extracellular matrix proteins in the connective tissue of the murine knee joint in OA. DESIGN: Expression of the genes encoding collagens II (Col2alpha1), X (Col10alpha1), alpha2(XI) (Col11alpha2) and aggrecan (Agc) was detected in skeletally mature and immature male mice of the CBA and STR/ort strains by in situ hybridization. RESULTS: Col2alpha1 was expressed by chondrocytes of the tibial and patella-femoral cartilage and by the meniscal cartilage in all young mice (4-9 weeks) but only in the patella-femoral cartilage in older mice of both strains (36-45 weeks). In contrast Col2alpha1 was expressed by growth plate chondrocytes of both species at all ages. Similarly, Col2alpha1 transcripts were detected in cruciate ligament cells in both strains at all ages. Col10alpha1 transcripts were detected in cruciate ligament cells in both strains at all ages. Col10alpha1 expression was evident in the hypertrophic chondrocytes in the growth plate of young CBA and STR mice, but was not active in these cells in mature animals. However, Col10alpha1 was transcribed in articular chondrocytes of the tibia, meniscal and patella-femoral cartilages of all ages, in normal and osteoarthritic mice. Transcripts were also present in ligament of some mature animals. Col11alpha2 followed a similar pattern of expression in CBA cartilages to Col2alpha1, being active in adult growth plate but generally inactive in adult articular cartilages. Young CBA and STR/ort mice expressed Col11alpha2 in articular cartilage and very strongly throughout the growth plate. Agc expression was detected in all articular cartilages at all ages in both strains. Interestingly, transcripts for all four genes were absent in tibial articular chondrocytes located close to osteoarthritic lesions in STR/ort mice, indicating that these cells are unable to synthesize matrix proteins. Adult STR/ort mice also showed evidence of tissue remodeling around the periphery of the knee joint. Cells in remodeling areas actively transcribed Col2alpha1, Col10alpha1, Col11alpha2 and Agc. CONCLUSION: It is unlikely that OA develops in STR/ort mice because of failure to express major proteins in joint tissue. However, once lesions develop in articular cartilage neighbouring chondrocytes fail to express genes encoding several matrix proteins.  (+info)

(4/149) Transglutaminase factor XIIIA in the cartilage of developing avian long bones.

Previously, we showed that mRNA for transglutaminase factor XIIIA (FXIIIA) is up-regulated in the hypertrophic zone of the growth plate of the chicken tibiotarsus, a well-characterized model of long bone development. In the present study, we have studied the distribution of the FXIIIA protein and of transglutaminase enzymatic activity in this growth plate, as well as in the cartilage of the epiphysis, which includes that of the articular surface. By immunohistochemical analysis, the protein is detected in the zone of maturation, where it is mostly intracellular, and in the hypertrophic zone, where it is present both intracellularly and in the extracellular matrix. The intracellular enzyme is mostly a zymogen, as determined with an antibody specific for the activation peptide. Externalization of FXIIIA is accompanied by enzyme activation. To study the pattern of transglutaminase activity, a synthetic transglutaminase substrate, rhodamine-conjugated tetrapeptide (Pro-Val-Lys-Gly), was used for pulse labeling in organ cultures. Intensive incorporation of the fluorescent substrate was observed throughout the hypertrophic zone and in the cells surrounding the forming blood vessels. The patterns of FXIIIA immunostaining and substrate incorporation overlap almost completely. The cartilaginous factor XIIIA is different from the plasma form in that, both intracellularly and extracellularly, it exists as a monomer, as determined by Western analysis, whereas the plasma form of FXIII is a tetrameric complex composed of both A and B subunits. We also identified FXIIIA and transglutaminase activity within the articular and condylar regions of the tarsus, suggesting a possible involvement of mechanical pressure and/or stress in the production of the molecule and subsequent cross-linking of the cartilage matrix. Thus, transglutaminases, in particular FXIIIA, are involved in the formation of long bones through its activity both in the hypertrophic region of the growth plate and in the formation of articular/epiphyseal cartilages.  (+info)

(5/149) Collagen X chains harboring Schmid metaphyseal chondrodysplasia NC1 domain mutations are selectively retained and degraded in stably transfected cells.

Collagen X is a short chain, homotrimeric collagen expressed specifically by hypertrophic chondrocytes during endochondral bone formation and growth. Although the exact role of collagen X remains unresolved, mutations in the COL10A1 gene disrupt growth plate function and result in Schmid metaphyseal chondrodysplasia (SMCD). With the exception of two mutations that impair signal peptide cleavage during alpha1(X) chain biosynthesis, SMCD mutations are clustered within the carboxyl-terminal NC1 domain. The formation of stable NC1 domain trimers is a critical stage in collagen X assembly, suggesting that mutations within this domain may result in subunit mis-folding or reduce trimer stability. When expressed in transiently transfected cells, alpha1(X) chains containing SMCD mutations were unstable and presumed to be degraded intracellularly. More recently, in vitro studies have shown that certain missense mutations may exert a dominant negative effect on alpha1(X) chain assembly by formation of mutant homotrimers and normal-mutant heterotrimers. In contrast, analysis of cartilage tissue from two SMCD patients revealed that the truncated mutant message was fully degraded, resulting in 50% reduction of functional collagen X within the growth plate. Therefore, in the absence of data that conclusively demonstrates the full cellular response to mutant collagen X chains, the molecular mechanisms underlying SMCD remain controversial. To address this, we closely examined the effect of two NC1 domain mutations, one frameshift mutation (1963del10) and one missense mutation (Y598D), using both semi-permeabilized cell and stable cell transfection expression systems. Although able to assemble to a limited extent in both systems, we show that, in intact cells, collagen X chains harboring both SMCD mutations did not evade quality control mechanisms within the secretory pathway and were degraded intracellularly. Furthermore, co-expression of wild-type and mutant chains in stable transfected cells demonstrated that, although wild-type chains were secreted, mutant chains were largely excluded from hetero-trimer formation. Our data indicate, therefore, that the predominant effect of the NC1 mutations Y598D and 1963del10 is a reduction in the amount of functional collagen X within the growth cartilage extracellular matrix.  (+info)

(6/149) Insight into Schmid metaphyseal chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer.

Collagen X is expressed specifically in the growth plate of long bones. Its C1q-like C-terminal NC1 domain forms a stable homotrimer and is crucial for collagen X assembly. Mutations in the NC1 domain cause Schmid metaphyseal chondrodysplasia (SMCD). The crystal structure at 2.0 A resolution of the human collagen X NC1 domain reveals an intimate trimeric assembly strengthened by a buried cluster of calcium ions. Three strips of exposed aromatic residues on the surface of NC1 trimer are likely to be involved in the supramolecular assembly of collagen X. Most internal SMCD mutations probably prevent protein folding, whereas mutations of surface residues may affect the collagen X suprastructure in a dominant-negative manner.  (+info)

(7/149) TGFbeta2 mediates the effects of hedgehog on hypertrophic differentiation and PTHrP expression.

The development of endochondral bones requires the coordination of signals from several cell types within the cartilage rudiment. A signaling cascade involving Indian hedgehog (Ihh) and parathyroid hormone related peptide (PTHrP) has been described in which hypertrophic differentiation is limited by a signal secreted from chondrocytes as they become committed to hypertrophy. In this negative-feedback loop, Ihh inhibits hypertrophic differentiation by regulating the expression of Pthrp, which in turn acts directly on chondrocytes in the growth plate that express the PTH/PTHrP receptor. Previously, we have shown that PTHrP also acts downstream of transforming growth factor beta (TGFbeta) in a common signaling cascade to regulate hypertrophic differentiation in embryonic mouse metatarsal organ cultures. As members of the TGFbeta superfamily have been shown to mediate the effects of Hedgehog in several developmental systems, we proposed a model where TGFbeta acts downstream of Ihh and upstream of PTHrP in a cascade of signals that regulate hypertrophic differentiation in the growth plate. This report tests the hypothesis that TGFbeta signaling is required for the effects of Hedgehog on hypertrophic differentiation and expression of PTHRP: We show that Sonic hedgehog (Shh), a functional substitute for Ihh, stimulates expression of Tgfb2 and Tgfb3 mRNA in the perichondrium of embryonic mouse metatarsal bones grown in organ cultures and that TGFbeta signaling in the perichondrium is required for inhibition of differentiation and regulation of Pthrp expression by Shh. The effects of Shh are specifically dependent on TGFbeta2, as cultures from Tgfb3-null embryos respond to Shh but cultures from Tgfb2-null embryos do not. Taken together, these data suggest that TGFbeta2 acts as a signal relay between Ihh and PTHrP in the regulation of cartilage hypertrophic differentiation.  (+info)

(8/149) Linking hematopoiesis to endochondral skeletogenesis through analysis of mice transgenic for collagen X.

Each skeletal element where marrow develops is first defined by a hypertrophic cartilage blueprint. Through programmed tissue substitution, the cartilaginous skeletal model is replaced by trabecular bone and marrow, with accompanying longitudinal tissue growth. During this process of endochondral ossification, hypertrophic cartilage expresses a unique matrix molecule, collagen X. Previously we reported that transgenic mice with dominant interference collagen X mutations develop variable skeleto-hematopoietic abnormalities, manifested as growth plate compressions, diminished trabecular bone, and reduced lymphatic organs (Nature 1993, 365:56). Here, histology and flow cytometry reveal marrow hypoplasia and impaired hematopoiesis in all collagen X transgenic mice. A subset of mice with perinatal lethality manifested the most severe skeletal defects and a reduction of marrow hematopoiesis, highlighted by a lymphocyte decrease. Thymic reduction is accompanied by a paucity of cortical immature T cells, consistent with the marrow's inability to replenish maturing cortical lymphocytes. Diminished spleens exhibit indistinct lymphatic nodules and red pulp depletion; the latter correlates with erythrocyte-filled vascular sinusoids in marrows. All mice display reduced B cells in marrows and spleens, and elevated splenic T cells. These hematopoietic defects underscore an unforeseen link between hypertrophic cartilage, endochondral ossification, and establishment of the marrow microenvironment required for blood cell differentiation.  (+info)