Biosynthetic processing of the pro-alpha 1(V)2pro-alpha 2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. (1/105)

The low abundance fibrillar collagen type V is incorporated into and regulates the diameters of type I collagen fibrils. Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays key roles in regulating formation of vertebrate extracellular matrix; it cleaves the C-propeptides of the major fibrillar procollagens I-III and processes precursors to produce the mature forms of the cross-linking enzyme prolysyl oxidase, the proteoglycan biglycan, and the basement membrane protein laminin 5. Here we have successfully produced recombinant pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, and we have used these to characterize biosynthetic processing of the most prevalent in vivo form of type V procollagen. In addition, we have compared the processing of endogenous pro-alpha1(V) chains by wild type mouse embryo fibroblasts and by fibroblasts derived from embryos doubly homozygous null for the Bmp-1 gene and for a gene encoding the closely related metalloprotease mammalian Tolloid-like 1. Together, results presented herein indicate that within pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, pro-alpha1(V) N-propeptides and pro-alpha2(V) C-propeptides are processed by BMP-1-like enzymes, and pro-alpha1(V) C-propeptides are processed by furin-like proprotein convertases in vivo.  (+info)

Schwann cell adhesion to a novel heparan sulfate binding site in the N-terminal domain of alpha 4 type V collagen is mediated by syndecan-3. (2/105)

Previously we reported that type V collagen synthesized by Schwann cells inhibits the outgrowth of axons from rat embryo dorsal root ganglion neurons but promotes Schwann cell migration (Chernousov, M. A., Stahl, R. C., and Carey, D. J. (2001) J. Neurosci. 21, 6125-6135). Analysis of Schwann cell adhesion and spreading on dishes coated with various type V collagen domains revealed that Schwann cells adhered effectively only to the non-collagenous N-terminal domain (NTD) of the alpha4(V) collagen chain. Schwann cell adhesion to alpha4(V)-NTD induced actin cytoskeleton assembly, tyrosine phosphorylation, and activation of the Erk1/Erk2 protein kinases. Adhesion to alpha4(V)-NTD is cell type-specific because rat fibroblasts failed to adhere to dishes coated with this polypeptide. Schwann cell adhesion and spreading on alpha4(V)-NTD was strongly inhibited by soluble heparin (IC(50) approximately 30 ng/ml) but not by chondroitin sulfate. Analysis of the heparin binding activities of a series of recombinant alpha4(V)-NTD fragments and deletion mutants identified a highly basic region (not present in other type V collagen NTD) as the site responsible for high affinity heparin binding. Schwann cells adhered poorly to dishes coated with alpha4(V)-NTD that lacked the heparin binding site and failed to spread or assemble organized actin-cytoskeletal structures. Soluble alpha4(V)-NTD polypeptide that contained the heparin binding site inhibited spreading of Schwann cells on dishes coated with alpha4(V)-NTD. Affinity chromatography of Schwann cell detergent extracts on a column of immobilized alpha4(V)-NTD resulted in the isolation of syndecan-3, a transmembrane heparan sulfate proteoglycan. Together, these results suggest that Schwann cells bind to collagen type V via syndecan-3-dependent binding to a novel high affinity heparin binding site in the alpha4(V)-NTD.  (+info)

Type V collagen distribution in liver is reconstructed in coculture system of hepatocytes and stellate cells; the possible functions of type V collagen in liver under normal and pathological conditions. (3/105)

The contents of type I, type III and type V collagen and the collagen type specific distributions in liver under normal and cirrhotic conditions were examined. In CCl4 injected rat, the increasing amount of type V collagen was a specific event during the progression of cirrhosis. In normal liver, immunohistochemical observation showed that type V collagen was localized on the fine fibrils, while type I was localized on the thick fibril. Type V collagen was partially colocalized with type IV collagen. In the cirrhotic liver, type V collagen was localized on the margin of the thick fibrous septa along with type IV collagen. Type I collagen existed in the core region of fibrous septa where the stellate cells were prominent. To elucidate the mechanism of the type specific deposition of collagen in the liver, we constructed a coculture system using both stellate cells and hepatocytes. In this system, type V collagen was mainly deposited on hepatocyte colonies not on stellate cells, while type I collagen fibrils were localized on stellate cells. The spatial positioning of type I and type V collagens in vitro was similar to that in the liver. In the cell adhesion assay, the adhesion of stellate cells to type V collagen was poorer than that of the hepatocytes. The collagen type-specific affinity of the stellate cells and hepatocytes may explain the specific localization of type V collagen in the liver and coculture system. These results suggested that the functions of type V collagen are not only to connect type IV collagen with type I collagen fibril, but also to protect the parenchyma from excess type I collagen deposition produced by stellate cells under pathological conditions.  (+info)

Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. (4/105)

We have reported that lung allograft rejection involves an immune response to a native protein in the lung, type V collagen (col(V)), and that col(V)-induced oral tolerance prevented acute and chronic rejection. In support of these findings col(V) fragments were detected in allografts during rejection, but not in normal lungs. The purpose of the current study was to isolate and characterize col(V)-specific allograft-infiltrating T cells and to determine their contribution to the rejection response in vivo. Two col(V)-specific T cell lines, LT1 and LT3, were isolated from F344 (RT1(lv1)) rat lung allografts during rejection that occurred after transplantation into WKY (RT1(l)) recipients. Both cell lines, but not normal lung lymphocytes, proliferated in response to col(V). Neither LT1 nor LT3 proliferated in response to alloantigens. LT1 and LT3 were CD4(+)CD25(-) and produced IFN-gamma in response to col(V). Compared with normal CD4(+) T cells, both cell lines expressed a limited V-beta TCR repertoire. Each cell strongly expressed V-beta 9 and 16, but differed in expression of other V-betas. Adoptive transfer of each cell line did not induce pathology in lungs of normal WKY rats. In contrast, adoptive transfer of LT1, but not LT3, caused marked peribronchiolar and perivascular inflammation in isograft (WKY) lungs and abrogated col(V)-induced oral tolerance to allograft (F344) lungs. Collectively, these data show that lung allograft rejection involves both allo- and autoimmune responses, and graft destruction that occurs during the rejection response may expose allograft-infiltrating T cells to potentially antigenic epitopes in col(V).  (+info)

Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal pro-alpha1(V) N-propeptides and Ehlers-Danlos syndrome type I. (5/105)

Ehlers-Danlos syndrome (EDS) type I (the classical variety) is a dominantly inherited, genetically heterogeneous connective-tissue disorder. Mutations in the COL5A1 and COL5A2 genes, which encode type V collagen, have been identified in several individuals. Most mutations affect either the triple-helical domain of the protein or the expression of one COL5A1 allele. We identified a novel splice-acceptor mutation (IVS4-2A-->G) in the N-propeptide-encoding region of COL5A1, in one patient with EDS type I. The outcome of this mutation was complex: In the major product, both exons 5 and 6 were skipped; other products included a small amount in which only exon 5 was skipped and an even smaller amount in which cryptic acceptor sites within exon 5 were used. All products were in frame. Pro-alpha1(V) chains with abnormal N-propeptides were secreted and were incorporated into extracellular matrix, and the mutation resulted in dramatic alterations in collagen fibril structure. The two-exon skip occurred in transcripts in which intron 5 was removed rapidly relative to introns 4 and 6, leaving a large (270 nt) composite exon that can be skipped in its entirety. The transcripts in which only exon 5 was skipped were derived from those in which intron 6 was removed prior to intron 5. The use of cryptic acceptor sites in exon 5 occurred in transcripts in which intron 4 was removed subsequent to introns 5 and 6. These findings suggest that the order of intron removal plays an important role in the outcome of splice-site mutations and provide a model that explains why multiple products derive from a mutation at a single splice site.  (+info)

Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. (6/105)

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal fibrotic lung disease. Transforming growth factor (TGF)-beta1 is present in a biologically active conformation in the epithelial cells lining lesions with advanced IPF. To determine the role of aberrant expression of biologically active TGF-beta1 by alveolar epithelial cells (AECs), the AECs of explanted normal rat lungs were transfected with the TGF-beta1 gene using the retrovirus pMX-L-s223,225-TGF-beta1. In situ hybridization using a digoxigenin-labeled cDNA of the puromycin resistance gene contained in the pMX demonstrated that pMX-L-s233,225-TGF-beta1 was selectively transfected into AECs of the explants. Conditioned media overlying explants obtained 7 days after being treated with pMX-L-s223,225-TGF-beta1 contained 14.5 +/- 3.15 pg/ml of active TGF-beta1. With the use of Masson's trichrome staining of explant sections obtained 14 days after transfection, there were lesions similar to those in IPF, characterized by type II AEC hyperplasia, interstitial thickening, extensive increase in interstitial and subepithelial collagen, an increase in the number of fibroblasts, and areas resembling fibroblast buds. Collagens I, III, IV, and V and fibronectin were increased in explants treated with pMX-L-s223,225-TGF-beta1. The findings in the current study suggest that IPF may be a disorder of epithelial cells and not inflammatory cells.  (+info)

Differential expression of Smad7 transcripts identifies the CD4+CD45RChigh regulatory T cells that mediate type V collagen-induced tolerance to lung allografts. (7/105)

Regulatory T cells (Tregs) induced by oral tolerance may suppress immunity by production of TGF-beta that could also enhance Treg activity. However, all cells that are phenotypically Tregs in rats (CD4(+)CD45RC(high)-RC(high)) may not have regulatory function. Because Smad7 expression in T cells is associated with inflammation and autoimmunity, then lack of Smad7 may identify those cells that function as Tregs. We reported that feeding type V collagen (col(V)) to WKY rats (RT1(l)) induces oral tolerance to lung allografts (F344-RT1(lvl)) by T cells that produce TGF-beta. The purpose of the current study was to identify the Tregs that mediate col(V)-induced tolerance, and determine Smad7 expression in these cells. RC(high) cells from tolerant rats were unresponsive to allogeneic stimulation and abrogated rejection after adoptive transfer. In contrast, CD4(+)CD45RC(low) (RC(low)) cells from tolerant rats and RC(high) or RC(low) cells from normal rats or untreated allograft recipients proliferated vigorously in response to donor Ags, and did not suppress rejection after adoptive transfer. TGF-beta enhanced proliferation in response to col(V) presented to tolerant RC(high), but not other cells. In contrast to other cells, only RC(high) cells from tolerant rats did not express Smad7. Collectively, these data show that the Tregs that mediate col(V)-induced tolerance to lung allografts do not express SMAD7 and, therefore, are permissive to TGF-beta-mediated signaling.  (+info)

Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen alpha5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes. (8/105)

The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism is implicated in extracellular matrix (ECM) synthesis, but its role in podocytes has not been studied. This study tested whether 12-LO induction by diabetes or by high glucose (HG) in cultured podocytes alters glomerular basement membrane by activating signal transduction pathways culminating in ECM synthesis. Sprague-Dawley rats received an injection of diluent (control [C]) or streptozotocin 65 mg/kg (DM) and were killed at 1 or 4 mo. Glomerular 12-LO mRNA and protein levels were higher in DM than in C glomeruli at 1 and 4 mo, and 12-LO localized predominantly in podocytes. Glomerular p38 mRNA and protein were higher in DM at months 1 and 4, but phospho-p38 mitogen-activated protein (MAPK) was increased only at month 1. Glomerular collagen alpha5(IV)/glutaraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA ratio was increased in DM at month 1 but not at month 4, whereas collagen alpha5(IV) protein was higher at both 1 and 4 mo. Mouse podocytes were cultured in media with 25 mM glucose (HG) with or without the 12-LO inhibitor cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC) or with 5.5 mM glucose + 19.5 mM mannitol (low glucose [LG+M]) for 10 d at 37 degrees C. 12-LO mRNA and protein levels were higher in HG than in LG+M as was the p38 MAPK/GAPDH mRNA ratio. Phospho-p38 MAPK protein but not total p38 MAPK was higher in HG compared with LG+M. Collagen alpha5(IV)/GAPDH mRNA ratio and protein were higher in HG than in LG+M. 12-LO inhibition by CDC decreased HG-induced phospho-p38 MAPK and the phospho-p38/total p38 MAPK ratio, collagen alpha5(IV)/GAPDH mRNA ratio, and collagen alpha5(IV) protein expression. In summary, diabetes in vivo and exposure of podocytes to HG in vitro stimulated 12-LO, p38 MAPK, and collagen alpha5(IV) mRNA and (activated) protein. 12-LO inhibition by CDC diminished the expression of podocyte phospho-p38 MAPK and collagen alpha5(IV) mRNA and protein. These findings implicate 12-LO and the p38 MAPK signaling pathway in the mediation of ECM synthesis by podocytes in diabetes.  (+info)