Green coffee bean extract improves human vasoreactivity. (17/125)

Our previous study revealed the antihypertensive effects of green coffee bean extract (GCE) ingestion in spontaneously hypertensive rats. We suggested that this antihypertensive action was due to the fact that GCE contains chlorogenic acid (CQA) as a major phenolic compound, and CQA in turn contains ferulic acid as a metabolic component that acts on nitric oxide (NO) derived from the vascular endothelium. In this study, the effects of GCE on blood vessels were evaluated in healthy males. The subjects were 20 healthy males with reduced vasodilation responses measured by strain gauge plethysmograms (SPG) to ischemic reactive hyperemia. Of the 20 subjects, 10 (mean age, 37.2 years) ingested a test drink containing GCE (CQA: 140 mg/day), and the other 10 (mean age, 34.8 years) ingested a placebo drink for 4 months. During the ingestion period, SPG, pulse wave velocity (PWV), and serum biochemical parameters were measured, and acceleration plethysmograms (APG) were taken. The reactive hyperemia ratio (RHR) in the test drink group began to increase after ingestion for 1 month and was significantly higher (p <0.05) than that in the placebo group after ingestion for 3 months and 4 months. In addition, after ingestion for 4 months, the test drink group showed a significant decrease (p <0.01) in the plasma total homocysteine level compared with the pre-ingestion level. However, there were no significant differences in PWV or APG between the test drink group and the placebo drink group. The improvement in RHR after ingestion of a drink containing GCE suggested an improvement in vasoreactivity by this component.  (+info)

Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. (18/125)

BACKGROUND AND AIMS: Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits. * METHODS: Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed. * KEY RESULTS AND CONCLUSIONS: With irrigation, plant hydraulic conductance (K(L)), midday psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, psi(x), g(s) and K(L) recovered rapidly following re-watering. Differences in root depth, K(L) and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.  (+info)

Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. (19/125)

An EST database has been generated for coffee based on sequences from approximately 47,000 cDNA clones derived from five different stages/tissues, with a special focus on developing seeds. When computationally assembled, these sequences correspond to 13,175 unigenes, which were analyzed with respect to functional annotation, expression profile and evolution. Compared with Arabidopsis, the coffee unigenes encode a higher proportion of proteins related to protein modification/turnover and metabolism-an observation that may explain the high diversity of metabolites found in coffee and related species. Several gene families were found to be either expanded or unique to coffee when compared with Arabidopsis. A high proportion of these families encode proteins assigned to functions related to disease resistance. Such families may have expanded and evolved rapidly under the intense pathogen pressure experienced by a tropical, perennial species like coffee. Finally, the coffee gene repertoire was compared with that of Arabidopsis and Solanaceous species (e.g. tomato). Unlike Arabidopsis, tomato has a nearly perfect gene-for-gene match with coffee. These results are consistent with the facts that coffee and tomato have a similar genome size, chromosome karyotype (tomato, n=12; coffee n=11) and chromosome architecture. Moreover, both belong to the Asterid I clade of dicot plant families. Thus, the biology of coffee (family Rubiacaeae) and tomato (family Solanaceae) may be united into one common network of shared discoveries, resources and information.  (+info)

Gibberella xylarioides sensu lato from Coffea canephora: a new mating population in the Gibberella fujikuroi species complex. (20/125)

Gibberella xylarioides Heim & Saccas (presumed anamorph, Fusarium xylarioides Steyaert) is the causal agent of coffee wilt disease, an economically important tracheomycosis in Africa. In vitro crosses carried out with Congolese, Ugandan, and Tanzanian single-ascospore/conidial isolates originating from diseased Coffea canephora/excelsa demonstrated a heterothallic mating system, controlled by a single locus with two alleles, MAT-1 and MAT-2. Compatible isolates produced fertile perithecia within 2 to 8 weeks after mating. Mating type (MAT) was characterized by PCR with primer pairs previously developed for the Gibberella fujikuroi species complex (GFC) and for Fusarium oxysporum. All strains analyzed were morphologically identical and corresponded to Booth's description of the "female" F. xylarioides strain. Based on crossing results and MAT-2/translation elongation 1-alpha (tef) sequence data, G. xylarioides, as currently understood, is demonstrated to encompass at least three "groups": G. xylarioides sensu strictu Ia, defined hitherto by two "historical" West African strains originating from the severe 1930s to 1950s epidemic (CBS 25852 and CBS 74979); G. xylarioides sensu strictu Ib, defined by two "historical" Central African lowland strains (DSMZ 62457 and ATCC 15664); and G. xylarioides sensu lato II, containing Congolese, Ugandan, and Tanzanian C. canephora/excelsa isolates. Infertility of crosses between the coffee wilt pathogen and known GFC mating populations demonstrates that G. xylarioides sensu lato constitutes a new biological species within the G. fujikuroi complex. MUCL 44532/MUCL 43887 and MUCL 35223/MUCL 44549 are proposed as G. xylarioides sensu lato II MAT-1/MAT-2 reference mating type tester strains.  (+info)

Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. (21/125)

Penicillium coffeae is described as a novel endophyte isolated from a Coffea arabica L. plant in Hawaii. The species is slow growing with short, vesiculate, monoverticillate conidiophores. Phylogenetic analysis using three loci shows that P. coffeae forms a strongly supported clade with P. fellutanum, P. charlesii, P. chermesinum, P. indicum, P. phoeniceum and P. brocae. Phenotypic ally these species are quite similar but can be distinguished. The EF-1alpha gene from P. fellutanum, P. charlesii, P. chermesinum and P. indicum lack introns, P. coffeae and P. phoeniceum have a previously unknown intron at codon 20 and P. brocae and P. thiersii isolates have a single intron at codon 26. The most parsimonious interpretation of intron changes on the strongly supported phylogenetic tree requires the gain of a novel intron at position 20 and loss of intron 26 to arrive at the current distribution of introns in this gene. This is one of only a few examples of intron gain in genes.  (+info)

Definition of architectural ideotypes for good yield capacity in Coffea canephora. (22/125)

BACKGROUND: Yield capacity is a target trait for selection of agronomically desirable lines; it is preferred to simple yields recorded over different harvests. Yield capacity is derived using certain architectural parameters used to measure the components of yield capacity. METHODS: Observation protocols for describing architecture and yield capacity were applied to six clones of coffee trees (Coffea canephora) in a comparative trial. The observations were used to establish architectural databases, which were explored using AMAPmod, a software dedicated to the analyses of plant architecture data. The traits extracted from the database were used to identify architectural parameters for predicting the yield of the plant material studied. CONCLUSIONS: Architectural traits are highly heritable and some display strong genetic correlations with cumulated yield. In particular, the proportion of fruiting nodes at plagiotropic level 15 counting from the top of the tree proved to be a good predictor of yield over two fruiting cycles.  (+info)

Genetic diversity in Hemileia vastatrix based on RAPD markers. (23/125)

Random amplified polymorphic DNA (RAPD) was used to assess the genetic structure of Hemileia vastatrix populations. Forty-five rust isolates with different virulence spectra and from different hosts and geographical regions were analyzed. Out of 45 bands, generated with three RAPD primers, 35 (78%) were polymorphic and scored as molecular markers. Cluster analysis exhibits unstructured variability of this pathogen with regard to physiological race, geographical origin or host. The genotypic diversity (H') inferred from Shannon's index was higher than gene diversity (Ht), suggesting that diversity is distributed among clonal lineages. Estimates of gene diversity in Africa and Asia populations were higher in total (Ht) as compared to within population diversity (Hs). Genetic differentiation was considerable among coffee rust isolates from Africa (Gst = 0.865) and Asia (Gst = 0.768) but not among isolates from South America (Gst = 0.266). We concluded that genetic diversity in H. vastatrix was moderately low and that the genetic differentiation among populations shows that asexual reproduction is likely to play an important role in the population biology of this fungus. This should be taken into account for the development of breeding programs.  (+info)

A keystone mutualism drives pattern in a power function. (24/125)

Data that can be described by a power function are ubiquitous in nature. Although there is consensus that such data frequently emerge generally from nonlinear complex systems, a variety of specific mechanisms may be responsible for creating the pattern in particular cases. Here, we report on the distribution of a scale insect (Coccus viridis) that is a common agricultural pest. Its distribution in an organic coffee farm in southern Mexico generally follows a power function, but there are subtle deviations from that function. We offer a biological explanation for both adherence to the power functions and associated deviations, along with supporting evidence.  (+info)