Loading...
(1/978) Dietary pantothenic acid requirement of juvenile grass shrimp, Penaeus monodon.

A feeding trial was conducted to estimate the minimal dietary pantothenic acid (PA) requirement for juvenile grass shrimp, Penaeus monodon. Purified diets with seven levels (0, 20, 40, 60, 120, 240, and 480 mg/kg) of supplemental PA were fed to P. monodon (mean weight 0.88 +/- 0.01 g) for 8 wk. The level of PA detected in the unsupplemented diet was 0.02 mg/kg. Each diet was fed to three replicate groups of shrimp. Feed efficiencies (FE) and protein efficiency ratios were highest in shrimp fed the diets supplemented with 120, 240, and 480 mg PA/kg diet, followed by the groups fed 60 mg/kg, then 40 mg/kg, and finally the unsupplemented control group (P < 0.05). Shrimp fed diets supplemented with PA had significantly higher survival percentages and lower hepatopancreatic lipid concentration than those fed the unsupplemented, control diets. Broken-line regression analyses of weight gain percentage and hepatopancreatic CoA and PA concentrations of the shrimp indicated that the adequate dietary PA concentration in growing P. monodon is 101-139 mg/kg.  (+info)

(2/978) High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein (sterol carrier protein-2).

Binding of fluorescent fatty acids to bovine liver non-specific lipid-transfer protein (nsL-TP) was assessed by measuring fluorescence resonance energy transfer (FRET) between the single tryptophan residue of nsL-TP and the fluorophore. Upon addition of pyrene dodecanoic acid (Pyr-C12) and cis-parinaric acid to nsL-TP, FRET was observed indicating that these fatty acids were accommodated in the lipid binding site closely positioned to the tryptophan residue. Substantial binding was observed only when these fatty acids were presented in the monomeric form complexed to beta-cyclodextrin. As shown by time-resolved fluorescence measurements, translocation of Pyr-C12 from the Pyr-C12-beta-cyclodextrin complex to nsL-TP changed dramatically the direct molecular environment of the pyrene moiety: i.e. the fluorescence lifetime of the directly excited pyrene increased at least by 25% and a distinct rotational correlation time of 7 ns was observed. In order to evaluate the affinity of nsL-TP for intermediates of the beta-oxidation pathway, a binding assay was developed based on the ability of fatty acyl derivatives to displace Pyr-C12 from the lipid binding site as reflected by the reduction of FRET. Hexadecanoyl-CoA and 2-hexadecenoyl-CoA were found to bind readily to nsL-TP, whereas 3-hydroxyhexadecanoyl-CoA and 3-ketohexadecanoyl-CoA bound poorly. The highest affinities were observed for the very-long-chain fatty acyl-CoA esters (24:0-CoA, 26:0-CoA) and their enoyl derivatives (24:1-CoA, 26:1-CoA). Binding of non-esterified hexadecanoic acid and tetracosanoic acid (24:0) was negligible.  (+info)

(3/978) The synthesis and hydrolysis of long-chain fatty acyl-coenzyme A thioesters by soluble and microsomal fractions from the brain of the developing rat.

1. The specific activities of long-chain fatty acid-CoA ligase (EC6.2.1.3) and of long-chain fatty acyl-CoA hydrolase (EC3.1.2.2) were measured in soluble and microsomal fractions from rat brain. 2. In the presence of either palmitic acid or stearic acid, the specific activity of the ligase increased during development; the specific activity of this enzyme with arachidic acid or behenic acid was considerably lower. 3. The specific activities of palmitoyl-CoA hydrolase and of stearoyl-CoA hydrolase in the microsomal fraction decreased markedly (75%) between 6 and 20 days after birth; by contrast, the corresponding specific activities in the soluble fraction showed no decline. 4. Stearoyl-CoA hydrolase in the microsomal fraction is inhibited (99%) by bovine serum albumin; this is in contrast with the microsomal fatty acid-chain-elongation system, which is stimulated 3.9-fold by albumin. Inhibition of stearoyl-CoA hydrolase does not stimulate stearoyl-CoA chain elongation. Therefore it does not appear likely that the decline in the specific activity of hydrolase during myelogenesis is responsible for the increased rate of fatty acid chain elongation. 5. It is suggested that the decline in specific activity of the microsomal hydrolase and to a lesser extent the increase in the specific activity of the ligase is directly related to the increased demand for long-chain acyl-CoA esters during myelogenesis as substrates in the biosynthesis of myelin lipids.  (+info)

(4/978) The tricarboxylic acid cycle of Helicobacter pylori.

The composition and properties of the tricarboxylic acid cycle of the microaerophilic human pathogen Helicobacter pylori were investigated in situ and in cell extracts using [1H]- and [13C]-NMR spectroscopy and spectrophotometry. NMR spectroscopy assays enabled highly specific measurements of some enzyme activities, previously not possible using spectrophotometry, in in situ studies with H. pylori, thus providing the first accurate picture of the complete tricarboxylic acid cycle of the bacterium. The presence, cellular location and kinetic parameters of citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate oxidase, fumarate reductase, fumarase, malate dehydrogenase, and malate synthase activities in H. pylori are described. The absence of other enzyme activities of the cycle, including alpha-ketoglutarate dehydrogenase, succinyl-CoA synthetase, and succinate dehydrogenase also are shown. The H. pylori tricarboxylic acid cycle appears to be a noncyclic, branched pathway, characteristic of anaerobic metabolism, directed towards the production of succinate in the reductive dicarboxylic acid branch and alpha-ketoglutarate in the oxidative tricarboxylic acid branch. Both branches were metabolically linked by the presence of alpha-ketoglutarate oxidase activity. Under the growth conditions employed, H. pylori did not possess an operational glyoxylate bypass, owing to the absence of isocitrate lyase activity; nor a gamma-aminobutyrate shunt, owing to the absence of both gamma-aminobutyrate transaminase and succinic semialdehyde dehydrogenase activities. The catalytic and regulatory properties of the H. pylori tricarboxylic acid cycle enzymes are discussed by comparing their amino acid sequences with those of other, more extensively studied enzymes.  (+info)

(5/978) ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of ApoB.

The concept that hepatic cholesteryl ester (CE) mass and the rate of cholesterol esterification regulate hepatocyte assembly and secretion of apoB-containing lipoproteins remains controversial. The present study was carried out in HepG2 cells to correlate the rate of cholesterol esterification and CE mass with apoB secretion by CI-1011, an acyl CoA:cholesterol acyltransferase (ACAT) inhibitor that is known to decrease apoB secretion, in vivo, in miniature pigs. HepG2 cells were incubated with CI-1011 (10 nmol/L, 1 micromol/L, and 10 micromol/L) for 24 hours. ApoB secretion into media was decreased by 25%, 27%, and 43%, respectively (P<0.0012). CI-1011 (10 micromol/L) inhibited HepG2 cell ACAT activity by 79% (P<0.002) and cellular CE mass by 32% (P<0.05). In contrast, another ACAT inhibitor, DuP 128 (10 micromol/L), decreased cellular ACAT activity and CE mass by 85% (P<0.002) and 42% (P=0.01), respectively, but had no effect on apoB secretion into media. To characterize the reduction in apoB secretion by CI-1011, pulse-chase experiments were performed and analyzed by multicompartmental modelling using SAAM II. CI-1011 did not affect the synthesis of apoB or albumin. However, apoB secretion into the media was decreased by 42% (P=0.019). Intracellular apoB degradation increased proportionately (P=0.019). The secretion of albumin and cellular reuptake of labeled lipoproteins were unchanged. CI-1011 and DuP 128 did not affect apoB mRNA concentrations. These results show that CI-1011 decreases apoB secretion by a mechanism that involves an enhanced intracellular degradation of apoB. This study demonstrates that ACAT inhibitors can exert differential effects on apoB secretion from HepG2 cells that do not reflect their efficacy in inhibiting cholesterol esterification.  (+info)

(6/978) The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity.

Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme in bacteria that catalyses a rate-limiting step in coenzyme A (CoA) biosynthesis, by transferring an adenylyl group from ATP to 4'-phosphopantetheine, yielding dephospho-CoA (dPCoA). Each phosphopantetheine adenylyltransferase (PPAT) subunit displays a dinucleotide-binding fold that is structurally similar to that in class I aminoacyl-tRNA synthetases. Superposition of bound adenylyl moieties from dPCoA in PPAT and ATP in aminoacyl-tRNA synthetases suggests nucleophilic attack by the 4'-phosphopantetheine on the alpha-phosphate of ATP. The proposed catalytic mechanism implicates transition state stabilization by PPAT without involving functional groups of the enzyme in a chemical sense in the reaction. The crystal structure of the enzyme from Escherichia coli in complex with dPCoA shows that binding at one site causes a vice-like movement of active site residues lining the active site surface. The mode of enzyme product formation is highly concerted, with only one trimer of the PPAT hexamer showing evidence of dPCoA binding. The homologous active site attachment of ATP and the structural distribution of predicted sequence-binding motifs in PPAT classify the enzyme as belonging to the nucleotidyltransferase superfamily.  (+info)

(7/978) Purification and some properties of a medium-chain acyl-thioester hydrolase from lactating-rabbit mammary gland which terminates chain elongation in fatty acid synthesis.

1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000+/-500 (mean+/-S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.  (+info)

(8/978) Characterization of a novel spermidine/spermine acetyltransferase, BltD, from Bacillus subtilis.

Overexpression of the BltD gene in Bacillus subtilis causes acetylation of the polyamines spermidine and spermine. BltD is co-regulated with another gene, Blt, which encodes a multidrug export protein whose overexpression facilitates spermidine export [Woolridge, Vazquez-Laslop, Markham, Chevalier, Gerner and Neyfakh (1997) J. Biol. Chem. 272, 8864-8866]. Here we show that BltD acetylates both spermidine and spermine at primary propyl amine moieties, with spermine being the preferred substrate. In the presence of saturating concentrations of acetyl CoA, BltD rapidly acetylates spermine at both the N1 and N12 positions. The Km (app) values for spermine, spermidine and N1-acetylspermine are +info)