Genomic structure and expression of the mouse growth factor receptor related to tyrosine kinases (Ryk). (9/6957)

We report the genomic organization of the mouse orphan receptor related to tyrosine kinases (Ryk), a structurally unclassified member of the growth factor receptor family. The mouse RYK protein is encoded by 15 exons distributed over a minimum of 81 kilobases. Genomic DNA sequences encoding a variant protein tyrosine kinase ATP-binding motif characteristic of RYK are unexpectedly found in two separate exons. A feature of the gene is an unmethylated CpG island spanning exon 1 and flanking sequences, including a TATA box-containing putative promoter and single transcription start site. Immunohistochemical examination of RYK protein distribution revealed widespread but developmentally regulated expression, which was spatially restricted within particular adult organs. Quantitative reduction of Southern blotting stringency for the detection of Ryk-related sequences provided evidence for a retroprocessed mouse pseudogene and a more distantly related gene paralogue. Extensive cross-species reactivity of a mouse Ryk kinase subdomain probe and the cloning of a Ryk orthologue from Caenorhabditis elegans demonstrate that Ryk and its relatives encode widely conserved members of a novel receptor tyrosine kinase subfamily.  (+info)

KRAS mutations predict progression of preneoplastic gastric lesions. (10/6957)

Eight hundred sixty-three subjects with atrophic gastritis were recruited to participate in an ongoing chemoprevention trial in Narino, Colombia. The participants were randomly assigned to intervention therapies, which included treatment to eradicate Helicobacter pylori infection followed by daily dietary supplementation with antioxidant micronutrients in a 2 x 2 x 2 factorial design. A series of biopsies of gastric mucosa were obtained according to a specified protocol from designated locations in the stomach for each participant at baseline (before intervention therapy) and at year three. A systematic sample of 160 participants was selected from each of the eight treatment combinations. DNA was isolated from each of these biopsies (n = 320), and the first exon of KRAS was amplified using PCR. Mutations in the KRAS gene were detected using denaturing gradient gel electrophoresis and confirmed by sequence analysis. Of all baseline biopsies, 14.4% (23 of 160) contained KRAS mutations. Among those participants with atrophic gastritis without metaplasia, 19.4% (6 of 25) contained KRAS mutations, indicating that mutation of this important gene is likely an early event in the etiology of gastric carcinoma. An important association was found between the presence of KRAS mutations in baseline biopsies and the progression of preneoplastic lesions. Only 14.6% (20 of 137) of participants without baseline KRAS mutations progressed from atrophic gastritis to intestinal metaplasia or from small intestinal metaplasia to colonic metaplasia; however, 39.1% (9 of 23) with baseline KRAS mutations progressed to a more advanced lesion after 3 years [univariate odds ratio (OR), 3.76 (P = 0.05); multivariate OR adjusted for treatment, 3.74 (P = 0.04)]. In addition, the specificity of the KRAS mutation predicted progression. For those participants with G-->T transversions at position 1 of codon 12 (GGT-->TGT), 19.4% (5 of 17) progressed (univariate OR, 2.4); however, 60.0% (3 of 5) of participants with G-->A transitions at position 1 of codon 12 (GGT-->AGT) progressed (univariate OR, 8.7; P = 0.004 using chi2 test).  (+info)

High frequency of germ-line BRCA2 mutations among Hungarian male breast cancer patients without family history. (11/6957)

To determine the contribution of BRCA1 and BRCA2 mutations to the pathogenesis of male breast cancer in Hungary, the country with the highest male breast cancer mortality rates in continental Europe, a series of 18 male breast cancer patients and three patients with gynecomastia was analyzed for germ-line mutations in both BRCA1 and BRCA2. Although no germ-line BRCA1 mutation was observed, 6 of the 18 male breast cancer cases (33%) carried truncating mutations in the BRCA2 gene. Unexpectedly, none of them reported a family history for breast/ovarian cancer. Four of six truncating mutations were novel, and two mutations were recurrent. Four patients (22%) had a family history of breast/ovarian cancer in at least one first- or second-degree relative; however, no BRCA2 mutation was identified among them. No mutation was identified in either of the genes in the gynecomastias. These results provide evidence for a strong genetic component of male breast cancer in Hungary.  (+info)

Expression of the Methanobacterium thermoautotrophicum hpt gene, encoding hypoxanthine (Guanine) phosphoribosyltransferase, in Escherichia coli. (12/6957)

The hpt gene from the archaeon Methanobacterium thermoautotrophicum, encoding hypoxanthine (guanine) phosphoribosyltransferase, was cloned by functional complementation into Escherichia coli. The hpt-encoded amino acid sequence is most similar to adenine phosphoribosyltransferases, but the encoded enzyme has activity only with hypoxanthine and guanine. The synthesis of the recombinant enzyme is apparently limited by the presence of the rare arginine codons AGA and AGG and the rare isoleucine AUA codon on the hpt gene. The recombinant enzyme was purified to apparent homogeneity.  (+info)

rpoB mutations in multidrug-resistant strains of Mycobacterium tuberculosis isolated in Italy. (13/6957)

Mutations of rpoB associated with rifampin resistance were studied in 37 multidrug-resistant (MDR) clinical strains of Mycobacterium tuberculosis isolated in Italy. At least one mutated codon was found in each MDR strain. It was always a single-base substitution leading to an amino acid change. Nine different rpoB alleles, three of which had not been reported before, were found. The relative frequencies of specific mutations in this sample were different from those previously reported from different geographical areas, since 22 strains (59.5%) carried the mutated codon TTG in position 531 (Ser-->Leu) and 11 (29.7%) had GAC in position 526 (His-->Asp).  (+info)

The marine cyanobacterium Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the enzyme. (14/6957)

Cyanobacteria assigned to the genus Synechococcus are an important component of oligotrophic marine ecosystems, where their growth may be constrained by low availability of fixed nitrogen. Urea appears to be a major nitrogen resource in the sea, but little molecular information exists about its utilization by marine organisms, including Synechococcus. Oligonucleotide primers were used to amplify a conserved fragment of the urease (urea amidohydrolase, EC 3.5.1.5) coding region from cyanobacteria. A 5.7 kbp region of the genome of the unicellular marine cyanobacterium Synechococcus sp. strain WH7805 was then cloned, and genes encoding three urease structural subunits and four urease accessory proteins were sequenced and identified by homology. The WH7805 urease had a predicted subunit composition typical of bacterial ureases, but the organization of the WH7805 urease genes was unique. Biochemical characteristics of the WH7805 urease enzyme were consistent with the predictions of the sequence data. Physiological data and sequence analysis both suggested that the urease operon may be nitrogen-regulated by the ntcA system in WH7805. Inactivation of the large subunit of urease, ureC, prevented WH7805 and Synechococcus WH8102 from growing on urea, demonstrating that the urease genes cloned are essential to the ability of these cyanobacteria to utilize urea as a nitrogen source.  (+info)

mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. (15/6957)

An examination of 51 mRNA sequences in GenBank has revealed that calculated mRNA folding is more stable than expected by chance. Free energy minimization calculations of native mRNA sequences are more negative than randomized mRNA sequences with the same base composition and length. Randomization of the coding region of genes yields folding free energies of less negative magnitude than the original native mRNA sequence. Randomization of codon choice, while still preserving original base composition, also results in less stable mRNAs. This suggests that a bias in the selection of codons favors the potential formation of mRNA structures which contribute to folding stability.  (+info)

Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. (16/6957)

The genomes of the spirochaetes Borrelia burgdorferi and Treponema pallidum show strong strand-specific skews in nucleotide composition, with the leading strand in replication being richer in G and T than the lagging strand in both species. This mutation bias results in codon usage and amino acid composition patterns that are significantly different between genes encoded on the two strands, in both species. There are also substantial differences between the species, with T.pallidum having a much higher G+C content than B. burgdorferi. These changes in amino acid and codon compositions represent neutral sequence change that has been caused by strong strand- and species-specific mutation pressures. Genes that have been relocated between the leading and lagging strands since B. burgdorferi and T.pallidum diverged from a common ancestor now show codon and amino acid compositions typical of their current locations. There is no evidence that translational selection operates on codon usage in highly expressed genes in these species, and the primary influence on codon usage is whether a gene is transcribed in the same direction as replication, or opposite to it. The dnaA gene in both species has codon usage patterns distinctive of a lagging strand gene, indicating that the origin of replication lies downstream of this gene, possibly within dnaN. Our findings strongly suggest that gene-finding algorithms that ignore variability within the genome may be flawed.  (+info)