Polymorphism of beta2-glycoprotein I at codons 306 and 316 in patients with systemic lupus erythematosus and antiphospholipid syndrome. (65/6957)

OBJECTIVE: To determine the frequency of mutations in the phospholipid binding domain of beta2-glycoprotein I (beta2GPI) in patients with systemic lupus erythematosus (SLE) and/or antiphospholipid syndrome (APS), and to analyze the clinical correlations of such mutations with thromboembolic complications. METHODS: Exons 7 and 8 of beta2GPI, which encode for its fifth domain, were amplified by polymerase chain reaction, and the presence of mutations was determined by restriction digestion and single-strand conformation polymorphism analysis. A clinical correlation with these mutations and the presence of antiphospholipid antibodies (aPL), lupus anticoagulant (LAC), anti-beta2GPI antibody, and the development of thromboembolic complications was performed using chi-square and Fisher's exact tests. RESULTS: From a total of 143 patients studied, we found that 5.6% were heterozygous for the mutation at exon 7 (codon 306), and 7.7% were heterozygous for the mutation at exon 8 (codon 316). No homozygous subjects were found for either mutation. No significant correlation between these mutations and the presence of aPL, LAC, or anti-beta2GPI antibodies was found. In patients with SLE (n = 95), 4 of 6 patients with exon 8 mutation had thrombosis, compared with 22 of 82 patients without the mutation (P = 0.043). CONCLUSION: The prevalence of mutations in the fifth domain of beta2GPI in these patients with SLE and/or APS were similar to those previously reported for the general population. Heterozygosity for either mutation does not influence the incidence of aPL, but in patients with SLE, the mutation at exon 8 may predispose to thrombosis as an independent factor.  (+info)

Histidine codons appended to the gene encoding the RPO22 subunit of vaccinia virus RNA polymerase facilitate the isolation and purification of functional enzyme and associated proteins from virus-infected cells. (66/6957)

Vaccinia virus encodes a eukaryotic-like RNA polymerase composed of two large and six small subunit protein species. A replication-competent virus with 10 histidine codons added to the single endogenous J4R open reading frame was constructed. The altered migration of the 22-kDa subunit of RNA polymerase on SDS-polyacrylamide gel electrophoresis confirmed that J4R encoded the RPO22 subunit and that the mutant virus was genetically stable. The histidine-tagged RNA polymerase bound quantitatively to metal-affinity resins and was eluted in an active form upon addition of imidazole. Glycerol gradient sedimentation of the eluted fraction indicated that most of the RPO22 in infected cells is associated with RNA polymerase. Using stringent washing conditions, metal-affinity chromatography resulted in a several hundred-fold increase in RNA-polymerase-specific activity, and substantially pure enzyme was obtained with an additional conventional chromatography step. When mild conditions were used for washing the metal-affinity resin, the vaccinia virus-encoded capping enzyme, early transcription factor, and nucleoside triphosphate phosphohydrolase I specifically co-eluted with the tagged RNA polymerase, consistent with their physical association. The ability to selectively bind RNA polymerase to an affinity column provided a simple and rapid method of concentrating and purifying active enzyme and protein complexes.  (+info)

Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant. (67/6957)

The evolution of DNA base composition evolution is simplified to a six-parameter model when there are no strand biases for mutation and selection. We analyzed the dynamics of this model with special attention to the influence of a change in substitution rates. The G + C content of the DNA sequence tends to an equilibrium value that is controlled by four parameters of the model. When the substitution rates are not constant, the G + C equilibrium position is not constant. The DNA sequence base frequencies always tend to a state in which A = T and G = C within a strand, regardless of substitution rates. This is true even when the substitution rates are not constant over time. This provides a simple way of rejecting the model from inspection of present-day DNA base composition.  (+info)

The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. (68/6957)

We sequenced across all of the gene boundaries in the mitochondrial genome of the cattle tick, Boophilus microplus, to determine the arrangement of its genes. The mtDNA of B. microplus has a coding region, composed of tRNA(Glu) and 60 bp of the 3' end of ND1, that is repeated five times. Boophilus microplus is the first coelomate animal known to have more than two copies of a coding sequence. The mitochondrial genome of B. microplus has other unusual features, including (1) reduced T arms in tRNAs, (2) an AT bias in codon use, (3) two control regions that have evolved in concert, (4) three gene rearrangements, and (5) a stem-loop between tRNA(Gln) and tRNA(Phe). The short T arms and small control regions (CRs) of B. microplus and other ticks suggest strong selection for small genomes. Imprecise termination of replication beyond its origin, which can account for the evolution of tandem repeats of coding regions in other mitochondrial genomes, cannot explain the evolution of the fivefold repeated sequence in the mitochondrial genome of B. microplus. Instead, slipped-strand mispairing or recombination are the most plausible explanations for the evolution of these tandem repeats.  (+info)

Selenium metabolism in Drosophila. Characterization of the selenocysteine tRNA population. (69/6957)

The selenocysteine (Sec) tRNA population in Drosophila melanogaster is aminoacylated with serine, forms selenocysteyl-tRNA, and decodes UGA. The Km of Sec tRNA and serine tRNA for seryl-tRNA synthetase is 6.67 and 9.45 nM, respectively. Two major bands of Sec tRNA were resolved by gel electrophoresis. Both tRNAs were sequenced, and their primary structures were indistinguishable and colinear with that of the corresponding single copy gene. They are 90 nucleotides in length and contain three modified nucleosides, 5-methylcarboxymethyluridine, N6-isopentenyladenosine, and pseudouridine, at positions 34, 37, and 55, respectively. Neither form contains 1-methyladenosine at position 58 or 5-methylcarboxymethyl-2'-O-methyluridine, which are characteristically found in Sec tRNA of higher animals. We conclude that the primary structures of the two bands of Sec tRNA resolved by electrophoresis are indistinguishable by the techniques employed and that Sec tRNAs in Drosophila may exist in different conformational forms. The Sec tRNA gene maps to a single locus on chromosome 2 at position 47E or F. To our knowledge, Drosophila is the lowest eukaryote in which the Sec tRNA population has been characterized to date.  (+info)

Predicting regional mutability in antibody V genes based solely on di- and trinucleotide sequence composition. (70/6957)

Somatic mutations are not distributed randomly throughout Ab V region genes. A sequence-specific target bias is revealed by a defined hierarchy of mutability among di- and trinucleotide sequences located within Ig intronic DNA. Here we report that the di- and trinucleotide mutability preference pattern is shared by mouse intronic JH and Jkappa clusters and by human VH genes, suggesting that a common mutation mechanism exists for all Ig V genes of both species. Using di- and trinucleotide target preferences, we performed a comprehensive analysis of human and murine germline V genes to predict regional mutabilities. Heavy chain genes of both species exhibit indistinguishable patterns in which complementarity-determining region 1 (CDR1), CDR2, and framework region 3 (FR3) are predicted to be more mutable than FR1 and FR2. This prediction is borne out by empirical mutation data from nonproductively rearranged human VH genes. Analysis of light chain genes in both species also revealed a common, but unexpected, pattern in which FR2 is predicted to be highly mutable. While our analyses of nonfunctional Ig genes accurately predicts regional mutation preferences in VH genes, observed relative mutability differences between regions are more extreme than expected. This cannot be readily accounted for by nascent mRNA secondary structure or by a supplemental gene conversion mechanism that might favor nucleotide replacements in CDR. Collectively, our data support the concept of a common mutation mechanism for heavy and light chain genes of mice and humans with regional bias that is qualitatively, but not quantitatively, accounted for by short nucleotide sequence composition.  (+info)

Fatal familial insomnia: clinical features and molecular genetics. (71/6957)

Fatal familial insomnia (FFI) is an autosomal dominant prion disease clinically characterized by inattention, sleep loss, dysautonomia, and motor signs and pathologically characterized by a preferential thalamic degeneration. FFI is linked to a missense mutation at codon 178 of the prion protein gene, PRNP, coupled with the presence of the codon methionine at position 129, the locus of a methionine-valine polymorphism. Homozygotes at codon 129, expressing methionine also in the nonmutated allele, have a shorter disease course (often less than 1 year), prominent sleep and autonomic disturbances at disease onset, and pathology restricted to the thalamus. Heterozygotes at codon 129, expressing valine in the nonmutated allele, have a longer disease course (often longer than 1 year), ataxia and dysarthria at disease onset, and lesions widespread to cerebral cortex. Both in the thalamus and in the cortex, the limbic structures are those most consistently and severely involved: the anterior ventral and mediodorsal thalamic nuclei, the cingulate gyrus, and the orbitofrontal cortex. FFI is thus a prion disease selectively damaging the thalamocortical limbic structures. Loss of sleep, sympathetic hyperactivity, and flattening of vegetative and hormonal circadian oscillations characterize FFI and result from a homeostatic imbalance caused by the interruption of the thalamocortical limbic circuits, the phylogenetically most advanced structures involved in the control of the sleep-wake cycle and the body's homeostasis. The selective atrophy of the limbic thalamus that characterizes FFI might be due to the binding of FFI toxic PrP or PrPres to specific receptors on thalamolimbic neurons.  (+info)

Topoisomerase sequences of coagulase-negative staphylococcal isolates resistant to ciprofloxacin or trovafloxacin. (72/6957)

Coagulase-negative staphylococcal isolates (n = 188) were screened for susceptibility to oxacillin, ciprofloxacin, and trovafloxacin, a new fluoroquinolone. At an oxacillin concentration of >/=4 microg/ml, 43% were methicillin resistant; of these, 70% were ciprofloxacin resistant (MIC, >/=4 microg/ml). Of the methicillin-resistant, ciprofloxacin-resistant isolates, 46% were susceptible to /=8 microg/ml) and increased trovafloxacin MICs (0.25 to 2 microg/ml) could be conferred by the combined presence of single mutations in each gyrA and grlA gene. Trovafloxacin MICs of >/=8 microg/ml also occurred, but these required an additional mutation in grlA.  (+info)