The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. (33/1018)

The starter unit used in the biosynthesis of daunorubicin is propionyl coenzyme A (CoA) rather than acetyl-CoA, which is used in the production of most of the bacterial aromatic polyketides studied to date. In the daunorubicin biosynthesis gene cluster of Streptomyces peucetius, directly downstream of the genes encoding the beta-ketoacyl:acyl carrier protein synthase subunits, are two genes, dpsC and dpsD, encoding proteins that are believed to function as the starter unit-specifying enzymes. Recombinant strains containing plasmids carrying dpsC and dpsD, in addition to other daunorubicin polyketide synthase (PKS) genes, incorporate the correct starter unit into polyketides made by these genes, suggesting that, contrary to earlier reports, the enzymes encoded by dpsC and dpsD play a crucial role in starter unit specification. Additionally, the results of a cell-free synthesis of 21-carbon polyketides from propionyl-CoA and malonyl-CoA that used the protein extracts of recombinant strains carrying other daunorubicin PKS genes to which purified DpsC was added suggest that this enzyme has the primary role in starter unit discrimination for daunorubicin biosynthesis.  (+info)

Large number of polymorphic nucleotides and a termination codon in the env gene of the endogenous human retrovirus ERV3. (34/1018)

The terminal portion of the pol gene and the entire env gene of the human endogenous retrovirus ERV3 was screened for polymorphic nucleotides. For this purpose fragments amplified from the desired regions of ERV3 were subjected to single strand conformational analysis (SSCP analysis). Using this approach, we detected 13 polymorphic nucleotides, namely four in the pol gene and nine in the env gene. Three of the nucleotide substitutions were synonymous (not affecting the amino acid code). One of the non-synonymous nucleotide substitutions changed an arginine codon to a termination codon. The alleles at the different polymorphic sites could be arranged into five ERV3 haplotypes, two of which were new. To evaluate the possible significance of the termination codon, which precludes expression of a putative immunoregulatory factor, we examined samples of DNA from patients with multiple sclerosis, a demyelinating disease of presumed autoimmune etiology. We did not find an association between the ERV3 allele with the termination codon and this disease. Perhaps the presence of a stop codon combined with the high number of non-synonymous nucleotide substitutions in the reading frame of the env gene reflects absence of selective constraints during evolution. Obviously, our findings contradict the assumption that the reading frame of the ERV3 env gene has been conserved throughout evolution.  (+info)

A premature termination codon in either exon of minute virus of mice P4 promoter-generated pre-mRNA can inhibit nuclear splicing of the intervening intron in an open reading frame-dependent manner. (35/1018)

How premature translation termination codons (PTCs) mediate effects on nuclear RNA processing is unclear. Here we show that a PTC at nucleotide (nt) 385 in the NS1/2 shared exon of P4-generated pre-mRNAs of the autonomous parvovirus minute virus of mice caused a decrease in the accumulated levels of doubly spliced R2 relative to singly spliced R1, although the total accumulated levels of R1 plus R2 remained the same. The effect of this PTC was evident within nuclear RNA, was mediated by a PTC and not a missense transversion mutation at this position, and could be suppressed by improvement of the large intron splice sites and by mutation of the AUG that initiated translation of R1 and R2. In contrast to the PTC at nt 385, the reading frame-dependent effect of the PTC at nt 2018 depended neither on the initiating AUG nor the normal termination codon for NS2; however, it could be suppressed by a single nucleotide deletion mutation in the upstream NS1/2 common exon that shifted the 2018 PTC out of the NS2 open reading frame. This suggested that there was recognition and communication of reading frame between exons on a pre-mRNA in the nucleus prior to or concomitant with splicing.  (+info)

Different mismatch repair deficiencies all have the same effects on somatic hypermutation: intact primary mechanism accompanied by secondary modifications. (36/1018)

Somatic hypermutation of Ig genes is probably dependent on transcription of the target gene via a mutator factor associated with the RNA polymerase (Storb, U., E.L. Klotz, J. Hackett, Jr., K. Kage, G. Bozek, and T.E. Martin. 1998. J. Exp. Med. 188:689-698). It is also probable that some form of DNA repair is involved in the mutation process. It was shown that the nucleotide excision repair proteins were not required, nor were mismatch repair (MMR) proteins. However, certain changes in mutation patterns and frequency of point mutations were observed in Msh2 (MutS homologue) and Pms2 (MutL homologue) MMR-deficient mice (for review see Kim, N., and U. Storb. 1998. J. Exp. Med. 187:1729-1733). These data were obtained from endogenous immunoglobulin (Ig) genes and were presumably influenced by selection of B cells whose Ig genes had undergone certain mutations. In this study, we have analyzed somatic hypermutation in two MutL types of MMR deficiencies, Pms2 and Mlh1. The mutation target was a nonselectable Ig-kappa gene with an artificial insert in the V region. We found that both Pms2- and Mlh1-deficient mice can somatically hypermutate the Ig test gene at approximately twofold reduced frequencies. Furthermore, highly mutated sequences are almost absent. Together with the finding of genome instability in the germinal center B cells, these observations support the conclusion, previously reached for Msh2 mice, that MMR-deficient B cells undergoing somatic hypermutation have a short life span. Pms2- and Mlh-1-deficient mice also resemble Msh2-deficient mice with respect to preferential targeting of G and C nucleotides. Thus, it appears that the different MMR proteins do not have unique functions with respect to somatic hypermutation. Several intrinsic characteristics of somatic hypermutation remain unaltered in the MMR-deficient mice: a preference for targeting A over T, a strand bias, mutational hot spots, and hypermutability of the artificial insert are all seen in the unselectable Ig gene. This implies that the MMR proteins are not required for and most likely are not involved in the primary step of introducing the mutations. Instead, they are recruited to repair certain somatic point mutations, presumably soon after these are created.  (+info)

nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. (37/1018)

We report the isolation and identification of a new mutation affecting pigment cell fate in the zebrafish neural crest. Homozygous nacre (nac(w2)) mutants lack melanophores throughout development but have increased numbers of iridophores. The non-crest-derived retinal pigment epithelium is normal, suggesting that the mutation does not affect pigment synthesis per se. Expression of early melanoblast markers is absent in nacre mutants and transplant experiments suggested a cell-autonomous function in melanophores. We show that nac(w2) is a mutation in a zebrafish gene encoding a basic helix-loop-helix/leucine zipper transcription factor related to microphthalmia (Mitf), a gene known to be required for development of eye and crest pigment cells in the mouse. Transient expression of the wild-type nacre gene restored melanophore development in nacre(-/-) embryos. Furthermore, misexpression of nacre induced the formation of ectopic melanized cells and caused defects in eye development in wild-type and mutant embryos. These results demonstrate that melanophore development in fish and mammals shares a dependence on the nacre/Mitf transcription factor, but that proper development of the retinal pigment epithelium in the fish is not nacre-dependent, suggesting an evolutionary divergence in the function of this gene.  (+info)

Interaction between a mutant release factor one and P-site peptidyl-tRNA is influenced by the identity of the two bases downstream of the stop codon UAG. (38/1018)

Termination efficiency of a mutant form of RF (release facor) 1, as compared to the wild-type enzyme, is influenced by the P-site peptidyl-tRNA if the termination signal is UAGA. This effect is weaker at the stronger termination signal UAGU. Similarly, low efficiency of the mutant RF1, together with certain peptidyl-tRNAs, can be increased by changing the second base of the 3'-flanking codon from C to G. The data suggest that the mutant RF1 interacts with the P-site peptidyl-tRNA in conjunction with the context at the 3'-side of the termination codon.  (+info)

Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. (39/1018)

An amber mutation at codon 145 (Y145stop) of the prion protein gene results in a variant of an inherited human prion disease named Gerstmann-Straussler-Scheinker syndrome. The characteristic features of this disorder include amyloid deposits of prion protein in cerebral parenchyma and vessels. We have studied the biosynthesis and processing of the prion protein containing the Y145stop mutation (PrP(145)) in transfected human neuroblastoma cells in an attempt to clarify the effect of the mutation on the metabolism of PrP(145) and to gain insight into the underlying pathogenetic mechanism. Our results demonstrate that 1) a significant proportion of PrP(145) is not processed post-translationally and retains the N-terminal signal peptide, 2) most PrP(145) is degraded very rapidly by the proteasome-mediated pathway, 3) blockage of proteasomal degradation results in intracellular accumulation of PrP(145), 4) most of the accumulated PrP(145) is detergent-insoluble, and both the detergent-soluble and -insoluble fractions are resistant to mild proteinase K (PK) treatment, suggesting that PK resistance is not simply because of aggregation. The present study demonstrates for the first time that a mutant prion protein is degraded through the proteasomal pathway and acquires PK-resistance if degradation is impaired.  (+info)

A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. (40/1018)

We have identified a novel stop-codon mutation in the mtDNA of a young woman with a multisystem mitochondrial disorder. Histochemical analysis of a muscle-biopsy sample showed virtually absent cytochrome c oxidase (COX) stain, and biochemical studies confirmed an isolated reduction of COX activity. Sequence analysis of the mitochondrial-encoded COX-subunit genes identified a heteroplasmic G-->A transition at nucleotide position 6930 in the gene for subunit I (COX I). The mutation changes a glycine codon to a stop codon, resulting in a predicted loss of the last 170 amino acids (33%) of the polypeptide. The mutation was present in the patient's muscle, myoblasts, and blood and was not detected in normal or disease controls. It was not detected in mtDNA from leukocytes of the patient's mother, sister, and four maternal aunts. We studied the genetic, biochemical, and morphological characteristics of transmitochondrial cybrid cell lines, obtained by fusing of platelets from the patient with human cells lacking endogenous mtDNA (rho0 cells). There was a direct relationship between the proportion of mutant mtDNA and the biochemical defect. We also observed that the threshold for the phenotypic expression of this mutation was lower than that reported in mutations involving tRNA genes. We suggest that the G6930A mutation causes a disruption in the assembly of the respiratory-chain complex IV.  (+info)