Reduced expression of the epithelial adhesion ligand laminin 5 in the skin causes intradermal tissue separation. (73/1486)

Laminin 5, the major keratinocyte adhesion ligand, is found in the lamina lucida subregion of the epidermal basement membrane of the skin, where it colocalizes with the anchoring filaments. Mutations in the genes encoding laminin 5 cause junctional epidermolysis bullosa, an inherited skin blistering disease characterized by abnormal hemidesmosomes and cleavage of the lamina lucida leading to epidermal detachment. In this work we describe the genetic basis of a new subtype of lethal inherited epidermolysis bullosa associated with reduced skin reactivity to laminin 5, presence of mature hemidesmosomes, and intradermal cleavage of the skin. The epidermolysis bullosa patients were heterozygous for a nonsense mutation (Q896X) and a splice site mutation (764-10T-->G) in the gene (LAMC2) for the gamma2 chain of laminin 5. The nonsense mutation causes accelerated decay of the corresponding mRNA, while the splice site mutation results in maturation of a cryptic wild-type gamma2 mRNA leading to reduced expression of wild-type laminin 5. In vitro studies using the probands' keratinocytes showed that secretion of reduced amounts of functional laminin 5 in the patient, although permitting formation of hemidesmosomes, fail to restore efficient cell adhesion. Our results provide the first evidence that laminin 5 contributes to the firm adhesion of the epithelial basement membrane to the underlying stroma. They also show that a low expression level of laminin 5 induces assembly of mature hemidesmosomes in vivo but fails to assure a stable cohesion of the dermal-epidermal junction.  (+info)

Mild muscular dystrophy due to a nonsense mutation in the LAMA2 gene resulting in exon skipping. (74/1486)

Nonsense mutations outside the splicing consensus sequence have been reported to cause skipping of the nonsense-containing exon in several human diseases. We describe, for the first time, nonsense-mediated exon skipping in the laminin alpha2 (LAMA2) gene. Two siblings from a consanguineous family had altered expression of the laminin alpha2 chain and moderate clinical manifestations. In both we identified the new nonsense mutation Arg744Stop, which we expected to result in a totally non-functional polypeptide. However, analysis of the transcript revealed skipping of exon 15, containing the mutation, even though the consensus sequences for splicing at both ends of the exon and the beginning of intron 15 were unaltered. Exon skipping restored the open reading frame of the mutant transcript and resulted in a truncated protein. In cases where the genetic findings do not elucidate the phenotype, mRNA analysis is necessary to clarify the primary effect of mutations. Our findings also point to the necessity of immunochemical screening for expression of laminin alpha2 chain in atypical dystrophic adults as well as children.  (+info)

Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues. (75/1486)

Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.  (+info)

Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome. (76/1486)

BACKGROUND: The renal K(+) channel ROMK (Kir1.1) controls salt reabsorption in the kidney. Loss-of-function mutations in this channel cause hyperprostaglandin E syndrome/antenatal Bartter syndrome (HPS/aBS), which is characterized by severe renal salt and fluid wasting. METHODS: We investigated 10 HPS/aBS patients for mutations in the ROMK gene by single-strand conformation polymorphism analysis (SSCA) and direct sequencing. To assess the functional consequences, Ba(2+)-sensitive K(+) currents were measured in five mutants of the core region as well as one mutant with truncated C-terminus, using the two-electrode voltage-clamp technique after an injection of mutant cRNA into Xenopus oocytes. RESULTS: Three novel ROMK mutations were identified together with six mutations described previously. The mutations were categorized into three groups: (1) amino acid exchanges in the core region (M1-H5-M2), (2) truncation at the cytosolic C-terminus, and (3) deletions of putative promoter elements. While the core mutations W99C, N124K, and I142T led to significantly reduced macroscopic K(+) currents (1 to 8% of wild-type currents), the A103V and P110L variants retained substantial K(+) conductivity (23 and 35% of wild-type currents, respectively). Coexpression of A103V and P110L, resembling the compound heterozygous state of the affected individual, further reduced macroscopic currents to 9% of the wild-type currents. All mutants in the core region exerted a dominant-negative effect on wild-type ROMK1. The C-terminal frameshift (fs) mutation (H354fs) did not change current amplitudes compared with ROMK1 wild type, suggesting that a mechanism other than alteration of the electrophysiological properties may responsible for loss of channel activity. CONCLUSIONS: Analysis of ROMK mutants linked to HPS/aBS revealed a spectrum of mechanisms accounting for loss of channel function. Further characterization of the molecular defects might be helpful for the development of new therapeutic approaches.  (+info)

Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. (77/1486)

Using "long-PCR," we amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900-nt sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large noncoding regions, one of which contains 13 repeats of a 31-nt sequence and a potential stem-loop structure of 25 bp with an 11-member loop. Large potential secondary structures were identified also for the noncoding regions of two other cestode mtDNAS: Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than placing them basal to either a clade of protostomes or a clade of coelomates.  (+info)

X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. (78/1486)

We report the first X-linked creatine-deficiency syndrome caused by a defective creatine transporter. The male index patient presented with developmental delay and hypotonia. Proton magnetic-resonance spectroscopy of his brain revealed absence of the creatine signal. However, creatine in urine and plasma was increased, and guanidinoacetate levels were normal. In three female relatives of the index patient, mild biochemical abnormalities and learning disabilities were present, to various extents. Fibroblasts from the index patient contained a hemizygous nonsense mutation in the gene SLC6A8 and were defective in creatine uptake. The three female relatives were heterozygous for this mutation in SLC6A8, which has been mapped to Xq28.  (+info)

Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay. (79/1486)

Nonsense-mediated decay (NMD), also called mRNA surveillance, is an evolutionarily conserved pathway that degrades mRNAs that prematurely terminate translation. To date, the pathway in mammalian cells has been shown to depend on the presence of a cis-acting destabilizing element that usually consists of an exon-exon junction generated by the process of pre-mRNA splicing. Whether or not mRNAs that derive from naturally intronless genes, that is, mRNAs not formed by the process of splicing, are also subject to NMD has yet to be investigated. The possibility of NMD is certainly reasonable considering that mRNAs of Saccharomyces cerevisiae are subject to NMD even though most derive from naturally intronless genes. In fact, mRNAs of S. cerevisiae generally harbor a loosely defined splicing-independent destabilizing element that has been proposed to function in NMD analogously to the spliced exon-exon junction of mammalian mRNAs. Here, we demonstrate that nonsense codons introduced into naturally intronless genes encoding mouse heat shock protein 70 or human histone H4 fail to elicit NMD. Failure is most likely because each mRNA lacks a cis-acting destabilizing element, because insertion of a spliceable intron a sufficient distance downstream of a nonsense codon within either gene is sufficient to elicit NMD.  (+info)

A novel nonsense mutation of the GTP cyclohydrolase I gene in a family with dopa-responsive dystonia. (80/1486)

We report a new nonsense mutation in the GTP cyclohydrolase I (GCH1) gene in a family with dopa-responsive dystonia. Two sisters and three children of the sisters are affected. The exons of the GCH1 gene were amplified by PCR and sequenced. The substitution of thymine for cytosine at nucleotide position 142 causing a nonsense mutation (Q48X) in exon 1 was identified in all of the five affected patients. There were three asymptomatic carriers of the mutation in the family.  (+info)