Post-termination ribosome interactions with the 5'UTR modulate yeast mRNA stability. (17/852)

A novel form of post-transcriptional control is described. The 5' untranslated region (5'UTR) of the Saccharomyces cerevisiae gene encoding the AP1-like transcription factor Yap2 contains two upstream open reading frames (uORF1 and uORF2). The YAP2-type of uORF functions as a cis-acting element that attenuates gene expression at the level of mRNA turnover via termination-dependent decay. Release of post-termination ribosomes from the YAP2 5'UTR causes accelerated decay which is largely independent of the termination modulator gene UPF1. Both of the YAP2 uORFs contribute to the destabilization effect. A G/C-rich stop codon context, which seems to promote ribosome release, allows an uORF to act as a transferable 5'UTR-destabilizing element. Moreover, termination-dependent destabilization is potentiated by stable secondary structure 3' of the uORF stop codon. The potentiation of uORF-mediated destabilization is eliminated if the secondary structure is located further downstream of the uORF, and is also influenced by a modulatory mechanism involving eIF2. Destabilization is therefore linked to the kinetics of acquisition of reinitiation-competence by post-termination ribosomes in the 5'UTR. Our data explain the destabilizing properties of YAP2-type uORFs and also support a more general model for the mode of action of other known uORFs, such as those in the GCN4 mRNA.  (+info)

Novel roles for classical factors at the interface between translation termination and initiation. (18/852)

The pathway of bacterial ribosome recycling following translation termination has remained obscure. Here, we elucidate two essential steps and describe the roles played by the three translation factors EF-G, RRF, and IF3. Release factor RF3 is known to catalyze the dissociation of RF1 or RF2 from ribosomes after polypeptide release. We show that the next step is dissociation of 50S subunits from the 70S posttermination complex and that it is catalyzed by RRF and EF-G and requires GTP hydrolysis. Removal of deacylated tRNA from the resulting 30S:mRNA:tRNA posttermination complex is then necessary to permit rapid 30S subunit recycling. We show that this step requires initiation factor IF3, whose role was previously thought to be restricted to promoting specific 30S initiation complex formation from free 30S subunits.  (+info)

Internal initiation of translation of bovine viral diarrhea virus RNA. (19/852)

Initiation of translation on the bovine viral diarrhea virus (BVDV) internal ribosomal entry site (IRES) was reconstituted in vitro from purified translation components to the stage of 48S ribosomal initiation complex formation. Ribosomal binding and positioning on this mRNA to form a 48S complex did not require the initiation factors eIF4A, eIF4B, or eIF4F, and translation of this mRNA was resistant to inhibition by a trans-dominant eIF4A mutant that inhibited cap-mediated initiation of translation. The BVDV IRES contains elements that are bound independently by ribosomal 40S subunits and by eukaryotic initiation factor (eIF) 3, as well as determinants that mediate direct attachment of 43S ribosomal complexes to the initiation codon.  (+info)

Major Egr3 isoforms are generated via alternate translation start sites and differ in their abilities to activate transcription. (20/852)

In previous studies, we detected a major, unidentified Egr response element (ERE) binding complex in brain extracts. We now report that this complex contains a truncated isoform of Egr3 generated by use of an alternate translation start site at methionine 106. Furthermore, the ERE binding complex previously thought to contain full-length Egr3 includes several isoforms generated by initiation at other internal methionines. Full-length and truncated (missing residues 1 to 105) Egr3 isoforms differ in the ability to stimulate transcription directed by a tandem repeat of two EREs but not by a single ERE. Taken together, our results indicate that alternative translation start sites are used to generate Egr3 isoforms with distinct transcriptional properties.  (+info)

The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. (21/852)

The internal ribosome entry segment (IRES) of picornaviruses consists of approximately 450 nt of 5'-untranslated region, terminating at the 3' end with an approximately 25 nt element consisting of an absolutely conserved UUUC motif followed by a more variable pyrimidine-rich tract and G-poor spacer, and finally an AUG triplet, which is considered to be the actual ribosome entry site. Events following entry at this site differ among picornaviruses: in encephalomyocarditis virus (EMCV) virtually all ribosomes initiate translation at this site (AUG-11); in foot-and-mouth-disease virus (FMDV), one-third of the ribosomes initiate at this AUG (the Lab site), and the rest at the next AUG 84 nt downstream (Lb site); and in poliovirus (PV), the AUG at the 3' end of the IRES (at nt 586 in PV type 1) is considered to be a silent entry site, with all ribosomes initiating translation at the next AUG downstream (nt 743). To investigate what determines this different behavior, chimeras were constructed with a crossover at the conserved UUUC motif: the body of the IRES, the sequences upstream of this UUUC motif, was derived from one species, and the downstream sequences from another. When the body of the FMDV or PV IRESes was replaced by that of EMCV, there was a marked increase in the absolute and relative frequency of initiation at the upstream AUG, the Lab site of FMDV and 586AUG of PV, respectively. In contrast, when the body of the EMCV IRES was replaced by that of PV, initiation occurred with no preference at three AUGs: the normal site (AUG-11), AUG-10 situated 8 nt upstream, and AUG-12, which is 12 nt downstream. Thus although the context of the AUG at the 3' end of the IRES may influence initiation frequency at this site, as was shown by improving the context of 586AUG of PV, the behavior of the ribosome is also highly dependent on the nature of the upstream IRES. Delivery of the ribosome to this AUG in an initiation-competent manner is particularly efficient and accurate with the EMCV IRES.  (+info)

A non-AUG-defined alternative open reading frame of the intestinal carboxyl esterase mRNA generates an epitope recognized by renal cell carcinoma-reactive tumor-infiltrating lymphocytes in situ. (22/852)

A number of Ags recognized by tumor-reactive T cells have been characterized, including nonmutated gene products and a variety of epitopes shown to arise from either mutated or alternatively processed transcripts. Here, we report that the screening of a cDNA library with an HLA-B7-restricted renal cell carcinoma-reactive T cell clone derived from tumor-infiltrating lymphocytes (TILs) that were clonally amplified in vivo (as assessed by TCRBV complementarity determining region-3 length distribution analysis) resulted in the isolation of a nonamer encoded by an alternative open reading frame (ORF) (a +1 frameshift) of the intestinal carboxyl esterase gene. This peptide binds HLA-B*0702-presenting molecules as assessed in an immunofluorescence-based peptide binding assay using transfected T2 cells. Constitutive expression of this alternative ORF protein was observed in all transformed HLA-B7+ renal cell lines that were recognized in cytotoxicity assays by the TILs. The intestinal carboxyl esterase gene is transcribed in renal cell carcinoma tumors as well as in normal liver, intestinal, or renal tissues. Mutation of the natural ATG translation initiation site did not alter recognition, indicating that frameshifting (i.e., slippage of the ribosome forward) and recoding are not involved. In addition, a point mutation of the three AUG codons that may be used as alternative translation initiation sites in the +1 ORF did not abolish recognition, whereas mutation of an upstream ACG codon did, indicating that the latter codon initiates the translation of the alternative ORF. These results further extend the types of Ags that can be recognized by tumor-reactive TILs in situ (i.e., leading to clonal T cell expansion).  (+info)

Modulation of translational efficiency by contextual nucleotides flanking a baculovirus initiator AUG codon. (23/852)

In a previous study of translational regulation of a baculovirus gene, we observed that translation initiated at an unexpectedly high efficiency from an AUG codon found in what was believed to be a poor context (M.-J. Chang and G. W. Blissard, 1997, J. Virol. 71, 7448-7460). In the current study, we examined the roles of nucleotides flanking a baculovirus AUG initiator codon in modulating translation initiation in lepidopteran insect cells. The roles of nucleotides flanking the AcMNPV gp64 initiator codon were examined by site-directed mutagenesis and functional assays in transfected Sf9 cells. To eliminate potential cis-acting sequences and effects, the gp64 initiator context was cloned in-frame with a chloramphenicol acetyl transferase reporter gene and under the control of a heterologous promoter. All possible single-nucleotide substitutions were generated in positions -6 to -1 and +4 to +6, relative to the A of the initiator AUG codon, which was designated +1. Constructs were transfected into lepidopteran cells and translation products were quantified by an enzyme-linked immunosorbent assay procedure. Substitutions of pyrimidines or other nucleotides at the -3 position resulted in little or no detectable effect on translation efficiency. In contrast, specific substitutions at the +4 and +5 positions resulted in approximately 2- to 3-fold increases in translation. Substitution of A in the +4 position resulted in an approximately 3-fold increase in translation, and substitution of any nucleotide for T in the +5 position resulted in approximately 1.9- to 2.8-fold increases. Substitutions at other positions (-6 to -1 and +6) resulted in no detectable increase or decrease in translation efficiency. These experimental results suggest an optimal initiator context of 5'-N N N N N N A U G A a/c/g N-3' for efficient translation initiation in lepidopteran cells. Consensus translation initiation contexts were generated from baculovirus genes and lepidopteran genes, then compared with the experimental results from the gp64 initiator context.  (+info)

Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. (24/852)

Immune surveillance by CD8 T cells requires that peptides derived from intracellular proteins be presented by MHC class I molecules on the target cell surface. Interestingly, MHC molecules can also present peptides encoded in alternate translational reading frames, some even without conventional AUG initiation codons. Using T cells to measure expression of MHC bound peptides, we identified the non-AUG translation initiation codons and established that their activity was at the level of translational rather than DNA replication or transcription mechanisms. This translation mechanism decoded the CUG initiation codon not as the canonical methionine but as the leucine residue, and its activity was independent of upstream translation initiation events. Naturally processed peptide/MHC complexes can thus arise from "noncoding" mRNAs via a novel translation initiation mechanism.  (+info)