PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech. (1/786)

Functional neuroimaging with positron emission tomography (PET) was used to compare the brain activation patterns of normal-hearing (NH) with postlingually deaf, cochlear-implant (CI) subjects listening to speech and nonspeech signals. The speech stimuli were derived from test batteries for assessing speech-perception performance of hearing-impaired subjects with different sensory aids. Subjects were scanned while passively listening to monaural (right ear) stimuli in five conditions: Silent Baseline, Word, Sentence, Time-reversed Sentence, and Multitalker Babble. Both groups showed bilateral activation in superior and middle temporal gyri to speech and backward speech. However, group differences were observed in the Sentence compared to Silence condition. CI subjects showed more activated foci in right temporal regions, where lateralized mechanisms for prosodic (pitch) processing have been well established; NH subjects showed a focus in the left inferior frontal gyrus (Brodmann's area 47), where semantic processing has been implicated. Multitalker Babble activated auditory temporal regions in the CI group only. Whereas NH listeners probably habituated to this multitalker babble, the CI listeners may be using a perceptual strategy that emphasizes 'coarse' coding to perceive this stimulus globally as speechlike. The group differences provide the first neuroimaging evidence suggesting that postlingually deaf CI and NH subjects may engage differing perceptual processing strategies under certain speech conditions.  (+info)

Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. (2/786)

In congenitally deaf cats, the central auditory system is deprived of acoustic input because of degeneration of the organ of Corti before the onset of hearing. Primary auditory afferents survive and can be stimulated electrically. By means of an intracochlear implant and an accompanying sound processor, congenitally deaf kittens were exposed to sounds and conditioned to respond to tones. After months of exposure to meaningful stimuli, the cortical activity in chronically implanted cats produced field potentials of higher amplitudes, expanded in area, developed long latency responses indicative of intracortical information processing, and showed more synaptic efficacy than in naive, unstimulated deaf cats. The activity established by auditory experience resembles activity in hearing animals.  (+info)

Positron emission tomography in cochlear implant and auditory brain stem implant recipients. (3/786)

OBJECTIVE: The purpose of this study was to determine whether similar cortical regions are activated by speech signals in profoundly deaf patients who have received a multichannel cochlear implant (CI) or auditory brain stem implant (ABI) as in normal-hearing subjects. STUDY DESIGN: Positron emission tomography (PET) studies were performed using a variety of discrete stimulus conditions. Images obtained were superimposed on standard anatomic magnetic resonance imaging (MRI) for the CI subjects. The PET images were superimposed on the ABI subject's own MRI. SETTING: Academic, tertiary referral center. PATIENTS: Five subjects who have received a multichannel CI and one who had received an ABI. INTERVENTION: Multichannel CI and ABI. MAIN OUTCOME MEASURE: PET images. RESULTS: Similar cortical regions are activated by speech stimuli in subjects who have received an auditory prosthesis. CONCLUSIONS: Neuroimaging provides a new approach to the study of speech processing in CI and ABI subjects.  (+info)

Noninvasive direct stimulation of the cochlear nerve for functional MR imaging of the auditory cortex. (4/786)

We herein present our preliminary experience with functional MR imaging of the direct electrical stimulation of the cochlear nerve using an MR imaging-compatible electrode placed in the external auditory meatus of five patients with binaural sensorineural hearing loss. The stimulator was placed outside the imager's bore, and the electrode produced virtually no susceptibility artifacts. In three of five patients, it was possible to activate the superior temporal gyrus during functional MR imaging. No side effects were observed.  (+info)

Cognitive factors and cochlear implants: some thoughts on perception, learning, and memory in speech perception. (5/786)

Over the past few years, there has been increased interest in studying some of the cognitive factors that affect speech perception performance of cochlear implant patients. In this paper, I provide a brief theoretical overview of the fundamental assumptions of the information-processing approach to cognition and discuss the role of perception, learning, and memory in speech perception and spoken language processing. The information-processing framework provides researchers and clinicians with a new way to understand the time-course of perceptual and cognitive development and the relations between perception and production of spoken language. Directions for future research using this approach are discussed including the study of individual differences, predicting success with a cochlear implant from a set of cognitive measures of performance and developing new intervention strategies.  (+info)

Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds. (6/786)

Cochlear prostheses for electrical stimulation of the auditory nerve ("electrical hearing") can provide auditory capacity for profoundly deaf adults and children, including in many cases a restored ability to perceive speech without visual cues. A fundamental challenge in auditory neuroscience is to understand the neural and perceptual mechanisms that make rehabilitation of hearing possible in these deaf humans. We have developed a feline behavioral model that allows us to study behavioral and physiological variables in the same deaf animals. Cats deafened by injection of ototoxic antibiotics were implanted with either a monopolar round window electrode or a multichannel scala tympani electrode array. To evaluate the effects of perceptually significant electrical stimulation of the auditory nerve on the central auditory system, an animal was trained to avoid a mild electrocutaneous shock when biphasic current pulses (0.2 ms/phase) were delivered to its implanted cochlea. Psychophysical detection thresholds and electrical auditory brain stem response (EABR) thresholds were estimated in each cat. At the conclusion of behavioral testing, acute physiological experiments were conducted, and threshold responses were recorded for single neurons and multineuronal clusters in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (A1). Behavioral and neurophysiological thresholds were evaluated with reference to cochlear histopathology in the same deaf cats. The results of the present study include: 1) in the cats implanted with a scala tympani electrode array, the lowest ICC and A1 neural thresholds were virtually identical to the behavioral thresholds for intracochlear bipolar stimulation; 2) behavioral thresholds were lower than ICC and A1 neural thresholds in each of the cats implanted with a monopolar round window electrode; 3) EABR thresholds were higher than behavioral thresholds in all of the cats (mean difference = 6.5 dB); and 4) the cumulative number of action potentials for a sample of ICC neurons increased monotonically as a function of the amplitude and the number of stimulating biphasic pulses. This physiological result suggests that the output from the ICC may be integrated spatially across neurons and temporally integrated across pulses when the auditory nerve array is stimulated with a train of biphasic current pulses. Because behavioral thresholds were lower and reaction times were faster at a pulse rate of 30 pps compared with a pulse rate of 2 pps, spatial-temporal integration in the central auditory system was presumably reflected in psychophysical performance.  (+info)

Differential recruitment of the speech processing system in healthy subjects and rehabilitated cochlear implant patients. (7/786)

Differences in cerebral activation between control subjects and post-lingually deaf rehabilitated cochlear implant patients were identified with PET under various speech conditions of different linguistic complexity. Despite almost similar performance in patients and controls, different brain activation patterns were elicited. In patients, an attentional network including prefrontal and parietal modality-aspecific attentional regions and subcortical auditory regions was over-activated irrespective of the nature of the speech stimuli and during expectancy of speech stimuli. A left temporoparietal semantic region was responsive to meaningless stimuli (vowels). In response to meaningful stimuli (words, sentences, story), left middle and inferior temporal semantic regions and posterior superior temporal phonological regions were under-activated in patients, whereas anterior superior temporal phonological regions were over-activated. These differences in the recruitment of the speech comprehension system reflect the alternative neural strategies that permit speech comprehension after cochlear implantation.  (+info)

Responses of inferior colliculus neurons to amplitude-modulated intracochlear electrical pulses in deaf cats. (8/786)

Current cochlear prostheses use amplitude-modulated pulse trains to encode acoustic signals. In this study we examined the responses of inferior colliculus (IC) neurons to sinusoidal amplitude-modulated pulses and compared the maximum unmodulated pulse rate (Fmax) to which they responded with the maximum modulation frequency (maxFm) that they followed. Consistent with previous results, responses to unmodulated pulses were all low-pass functions of pulse rate. Mean Fmax to unmodulated pulses was 104 pulses per second (pps) and modal Fmax was 60 pps. Above Fmax IC neurons ceased responding except for an onset burst at the beginning of the stimulus. However, IC neurons responded to much higher pulse rates when these pulses were amplitude modulated; 74% were relatively insensitive to carrier rate and responded to all modulated carriers including those exceeding 600 pps. In contrast, the responses of these neurons (70%) were low-pass functions of modulation frequency, and the remaining (30%) had band-pass functions with a maxFm of 42 and 34 Hz, respectively. Thus temporal resolution of IC neurons for modulated frequencies is significantly lower than that for unmodulated pulses. These two measures of temporal resolution (Fmax and maxFm) were uncorrelated (r(2) = 0.101). Several parameters influenced the amplitude and temporal structure of modulation responses including modulation depth, overall intensity and modulation-to-carrier rate ratio. We observed distortions in unit responses to amplitude-modulated signals when this ratio was 1/4 to 1/6. Since most current cochlear implant speech processors permit ratios that are significantly greater than this, severe distortion and signal degradation may occur frequently in these devices.  (+info)