Determination of anti-acetylcholine receptor antibodies in myasthenic patients by use of time-resolved fluorescence. (9/95)

BACKGROUND: Autoantibodies against nicotinic acetylcholine receptor (nAChR) in myasthenia gravis (MG) patients are usually detected by radioimmunoprecipitation assays using extracted acetylcholine receptors labeled irreversibly with 125I-alpha-bungarotoxin (alpha-BuTx). To provide a nonradioactive immunoassay, we established an assay using nAChRs labeled with Eu(3+)-alpha-cobratoxin (alpha-CTx). METHODS: We derivatized alpha-CTx with a diethylenetriaminepentaacetate moiety and formed a complex with Eu(3+). The complex was purified by HPLC, and the fractions were tested for binding to Torpedo and human nAChRs. The most active fractions were used to label nAChRs for the immunoprecipitation assay, and the bound Eu(3+) was quantified by time-resolved fluorescence. RESULTS: Eu(3+)-labeled alpha-CTx competed with 125I-alpha-BuTx for binding to Torpedo nAChRs and saturated the binding sites of human nAChRs, with a K(d) of 7.2 x 10(-9) mol/L. Results of the immunoassay performed with Eu(3+)-labeled alpha-CTx were similar to those obtained with 125I-alpha-BuTx, with a slightly higher limit of detection [0.3 nmol/L (n = 6) vs approximately 0.1 nmol/L for isotopic assay]. None of 34 negative sera tested (16 healthy controls, 10 patients with nonmyasthenia-related disease, 8 patients seronegative for MG) gave a value >0.3 nmol/L. Of the 35 positive myasthenic sera (with antibody values, previously determined by isotopic assay, of 0.4-1290 nmol/L) compared in the two assays, 32 tested positive with the Eu(3+) assay. Linear regression analysis yielded the equation: y = 1.035x - 0.013 nmol/L; S(y:x) = 0.172 nmol/L; r(2) = 0.977. CONCLUSIONS: The new time-resolved fluorescence method for quantification of antibodies to nAChRs in MG patients provides a performance similar to that of the widely used isotopic assay and could be used in laboratories with restricted use of isotopes.  (+info)

Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. (10/95)

To understand how snake neurotoxins interact with nicotinic acetylcholine receptors, we have elaborated an experimentally based model of the alpha-cobratoxin-alpha7 receptor complex. This model was achieved by using (i) a three-dimensional model of the alpha7 extracellular domain derived from the crystallographic structure of the homologous acetylcholine-binding protein, (ii) the previously solved x-ray structure of the toxin, and (iii) nine pairs of residues identified by cycle-mutant experiments to make contacts between the alpha-cobratoxin and alpha7 receptor. Because the receptor loop F occludes entrance of the toxin binding pocket, we submitted this loop to a dynamics simulation and selected a conformation that allowed the toxin to reach its binding site. The three-dimensional structure of the toxin-receptor complex model was validated a posteriori by an additional double-mutant experiment. The model shows that the toxin interacts perpendicularly to the receptor axis, in an equatorial position of the extracellular domain. The tip of the toxin central loop plugs into the receptor between two subunits, just below the functional receptor loop C, the C-terminal tail of the toxin making adjacent additional interactions at the receptor surface. The receptor establishes major contacts with the toxin by its loop C, which is assisted by principal (loops A and B) and complementary (loops D, F, and 1) functional regions. This model explains the antagonistic properties of the toxin toward the neuronal receptor and opens the way to the design of new antagonists.  (+info)

Structure-function relationship of three neurotoxins from the venom of Naja kaouthia: a comparison between the NMR-derived structure of NT2 with its homologues, NT1 and NT3. (11/95)

Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 61-residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop II, and the cation groups of all three arginines face out of the molecular surface of NT1. This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3.  (+info)

Cytotoxic potency of cardiotoxin from Naja sputatrix: development of a new cytolytic assay. (12/95)

The possible involvement of specific regions/loops of cardiotoxin from Naja sputatrix venom in mediating its cytolytic activity is evaluated using a new cytolytic assay. In this assay, the amount of chloramphenicol acetyltransferase (CAT) that is released upon lysis of the cellular membranes by the cytotoxin has been measured as an index of cytolysis. This newly developed CAT system is more sensitive than the traditional haemolysis method utilizing red blood cells or the lactate dehydrogenase assay for cytolysis. Series of chimaeric toxin molecules have been constructed by swapping the loops between highly hydrophilic neurotoxin and highly hydrophobic cardiotoxin molecules from Naja sputatrix, which are known to exhibit structural similarity (three-finger conformation) but to have different functional properties. Comparison of the cytolytic activities of the recombinant chimaeric toxins demonstrated the possible involvement of all three loops of cardiotoxin in its cytolytic potency. However, the first two loops of the protein appear to make the major contribution to its lytic activity. cDNAs encoding cardiotoxin and the chimaeric toxins, when expressed in transfected cultured Chinese hamster ovary cells, resulted in cell lysis, indicating that these cDNAs can be developed as useful cytolytic agents.  (+info)

Refolding of the Escherichia coli expressed extracellular domain of alpha 7 nicotinic acetylcholine receptor. (13/95)

Heterologous expression of the extracellular domains (ECDs) of the nicotinic acetylcholine receptor (AChR) subunits may give large amounts of proteins for studying the functional and spatial characteristics of their ligand-binding sites. The ECD of the alpha 7 subunit of the homo-oligomeric alpha 7 neuronal AChR appears to be a more suitable object than the ECDs of other heteromeric neuronal or muscle-type AChRs. The rat alpha 7 ECDs (amino-acid residues approximately 1-210) were recently expressed in Escherichia coli as fusion proteins with maltose-binding protein [Fischer, M., Corringer, P., Schott, K., Bacher, A. & Changeux, J. (2001) Proc. Natl Acad. Sci. USA 98, 3567-3570] and glutathione S-transferase (GST) [Utkin, Y., Kukhtina, V., Kryukova, E., Chiodini, F., Bertrand, D., Methfessel, C. & Tsetlin, V. (2001) J. Biol. Chem. 276, 15810-15815]. However, these proteins exist in solution mostly as high-molecular mass aggregates rather than monomers or oligomers. In the present work it is found that refolding of GST-alpha 7-(1-208) protein in the presence of 0.1% SDS considerably decreases the formation of high-molecular mass aggregates. The C116S mutation in the alpha 7 moiety was found to further decrease the aggregation and to increase the stability of protein solutions. This mutation slightly increased the affinity of the protein for alpha-bungarotoxin (from Kd approximately 300 to 150 nm). Gel-permeation HPLC was used to isolate the monomeric form of the GST-alpha 7-(1-208) protein and its mutant almost devoid of SDS. CD spectra revealed that the C116S mutation considerably increased the content of beta structure and made it more stable under different conditions. The monomeric C116S mutant appears promising both for further structural studies and as a starting material for preparing the alpha 7 ECD in an oligomeric form.  (+info)

NMR-based binding screen and structural analysis of the complex formed between alpha-cobratoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. (14/95)

The alpha18-mer peptide, spanning residues 181-198 of the Torpedo nicotinic acetylcholine receptor alpha1 subunit, contains key binding determinants for agonists and competitive antagonists. To investigate whether the alpha18-mer can bind other alpha-neurotoxins besides alpha-bungarotoxin, we designed a two-dimensional (1)H-(15)N heteronuclear single quantum correlation experiment to screen four related neurotoxins for their binding ability to the peptide. Of the four toxins tested (erabutoxin a, erabutoxin b, LSIII, and alpha-cobratoxin), only alpha-cobratoxin binds the alpha18-mer to form a 1:1 complex. The NMR solution structure of the alpha-cobratoxin.alpha18-mer complex was determined with a backbone root mean square deviation of 1.46 A. In the structure, alpha-cobratoxin contacts the alpha18-mer at the tips of loop I and II and through C-terminal cationic residues. The contact zone derived from the intermolecular nuclear Overhauser effects is in agreement with recent biochemical data. Furthermore, the structural models support the involvement of cation-pi interactions in stabilizing the complex. In addition, the binding screen results suggest that C-terminal cationic residues of alpha-bungarotoxin and alpha-cobratoxin contribute significantly to binding of the alpha18-mer. Finally, we present a structural model for nicotinic acetylcholine receptor-alpha-cobratoxin interaction by superimposing the alpha-cobratoxin.alpha18-mer complex onto the crystal structure of the acetylcholine-binding protein (Protein Data Bank code ).  (+info)

Motions and structural variability within toxins: implication for their use as scaffolds for protein engineering. (15/95)

Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  (+info)

Phosphorescence and ODMR study of the binding interactions of acetylcholine receptor alpha-subunit peptides with alpha-cobratoxin. (16/95)

Optical detection of magnetic resonance (ODMR) and phosphorescence spectroscopy have been applied to synthetic peptides derived from the alpha-subunit of the nicotinic acetylcholine receptor of Torpedo californica and their complexes with alpha-cobratoxin (CBTX). The CBTX Trp phosphorescence is strongly quenched by the proximal disulfide linkage, while the emission wavelengths and ODMR frequencies of the 18-mer alpha 181-198 indicate a more hydrophobic Trp environment than in the 12-mer alpha 185-196. Binding to CBTX produces a subtle increase in the hydrophobicity of the Trp environment for the peptides, in qualitative agreement with a recently proposed binding model, in which a receptor Trp residue interacts strongly with a hydrophobic cleft of the toxin.  (+info)