Genetic control by a metabolite binding mRNA. (41/283)

Messenger RNAs are typically thought of as passive carriers of genetic information that are acted upon by protein- or small RNA-regulatory factors and by ribosomes during the process of translation. We report that the 5'-untranslated sequence of the Escherichia coli btuB mRNA assumes a more proactive role in metabolic monitoring and genetic control. The mRNA serves as a metabolite-sensing genetic switch by selectively binding coenzyme B(12) without the need for proteins. This binding event establishes a distinct RNA structure that is likely to be responsible for inhibition of ribosome binding and consequent reduction in synthesis of the cobalamin transport protein BtuB. This finding, along with related observations, supports the hypothesis that metabolic monitoring through RNA-metabolite interactions is a widespread mechanism of genetic control.  (+info)

Functions of the D-ribosyl moiety and the lower axial ligand of the nucleotide loop of coenzyme B(12) in diol dehydratase and ethanolamine ammonia-lyase reactions. (42/283)

The roles of the D-ribosyl moiety and the bulky axial ligand of the nucleotide loop of adenosylcobalamin in coenzymic function have been investigated using two series of coenzyme analogs bearing various artificial bases. The 2-methylbenzimidazolyl trimethylene analog that exists exclusively in the base-off form was a totally inactive coenzyme for diol dehydratase and served as a competitive inhibitor. The benzimidazolyl trimethylene analog and the benzimidazolylcobamide coenzyme were highly active for diol dehydratase and ethanolamine ammonia-lyase. The imidazolylcobamide coenzyme was 59 and 9% as active as the normal coenzyme for diol dehydratase and ethanolamine ammonia-lyase, respectively. The latter analog served as an effective suicide coenzyme for both enzymes, although the partition ratio (k(cat)/k(inact)) of 630 for ethanolamine ammonia-lyase is much lower than that for diol dehydratase. Suicide inactivation was accompanied by the accumulation of a cob(II)amide species, indicating irreversible cleavage of the coenzyme Co-C bond during the inactivation. It was thus concluded that the bulkiness of a Co-coordinating base of the nucleotide loop is essential for both the initial activity and continuous catalytic turnovers. Since the k(cat)/k(inact) value for the imidazolylcobamide in diol dehydratase was 27-times higher than that for the imidazolyl trimethylene analog, it is clear that the ribosyl moiety protects the reaction intermediates from suicide inactivation. Stopped-flow measurements indicated that the rate of Co-C bond homolysis is essentially unaffected by the bulkiness of the Co-coordinating base for diol dehydratase. Thus, it seems unlikely that the Co-C bond is labilized through a ground state mechanochemical triggering mechanism in diol dehydratase.  (+info)

The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis. (43/283)

Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicum strain DeltaH, but no evidence was obtained to demonstrate the direct involvement of this protein in cobamide biosynthesis in archaea. Computer analysis of the Halobacterium sp. strain NRC-1 ORF Vng1581C gene and the cobY gene of M. thermoautotrophicum strain DeltaH showed the primary amino acid sequence of the proteins encoded by these two genes to be 35% identical and 48% similar. A strain of Halobacterium sp. strain NRC-1 carrying a null allele of the cobY gene was auxotrophic for cobinamide-GDP, a known intermediate of the late steps of cobamide biosynthesis. The auxotrophic requirement for cobinamide-GDP was corrected when a wild-type allele of cobY was introduced into the mutant strain, demonstrating that the lack of cobY function was solely responsible for the observed block in cobamide biosynthesis in this archaeon. The data also show that Halobacterium sp. strain NRC-1 possesses a high-affinity transport system for corrinoids and that this archaeon can synthesize cobamides de novo under aerobic growth conditions. To the best of our knowledge this is the first genetic and nutritional analysis of cobalamin biosynthetic mutants in archaea.  (+info)

Alpha-5,6-dimethylbenzimidazole adenine dinucleotide (alpha-DAD), a putative new intermediate of coenzyme B12 biosynthesis in Salmonella typhimurium. (44/283)

The CobT enzyme of Salmonella typhimurium was shown in vitro to have NAD(+)-dependent ADPribosyltransferase activity. The CobT enzyme transferred the ADPribosyl moiety of NAD(+) onto 5,6-dimethylbenzimidazole (DMB) yielding a new dinucleotide, namely alpha-5,6-dimethylbenzimidazole adenine dinucleotide (alpha-DAD), whose identity was established by mass spectrometry. The N(1)-(alpha-D-ribosyl)-5,6-dimethylbenzimidazoyl moiety (alpha-ribazole) of alpha-DAD was incorporated into adenosylcobalamin (AdoCbl) by cell-free extracts of S. typhimurium, indicating that alpha-DAD served as an intermediate of AdoCbl biosynthesis. The rate of transfer of the ADPribosyl moiety was slower than the rate of transfer of the phosphoribosyl moiety of nicotinate mononucleotide (NaMN) to DMB. The CobT enzyme displayed a low K(m) for NaMN (0.51 mM) relative to the one for NAD(+) (9 mM); nicotinate adenine dinucleotide (NaAD) and nicotinamide mononucleotide (NMN) also served as substrates for CobT. In spite of the high K(m) of CobT for NAD(+), the latter is proposed to be a relevant physiological substrate of CobT, given that the intracellular concentrations of NaMN, NMN and NaAD in actively growing S. typhimurium are undetectable. Evidence shows that extracts of S. typhimurium contain an as-yet unidentified dinucleotide pyrophosphatase that can cleave alpha-DAD into alpha-ribazole-5'-P and AMP; alpha-ribazole-5'-P can then enter the AdoCbl biosynthetic pathway.  (+info)

Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. (45/283)

To isolate genes encoding coenzyme B(12)-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.  (+info)

Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. (46/283)

Using comparative analysis of genes, operons, and regulatory elements, we describe the cobalamin (vitamin B12) biosynthetic pathway in available prokaryotic genomes. Here we found a highly conserved RNA secondary structure, the regulatory B12 element, which is widely distributed in the upstream regions of cobalamin biosynthetic/transport genes in eubacteria. In addition, the binding signal (CBL-box) for a hypothetical B12 regulator was identified in some archaea. A search for B12 elements and CBL-boxes and positional analysis identified a large number of new candidate B12-regulated genes in various prokaryotes. Among newly assigned functions associated with the cobalamin biosynthesis, there are several new types of cobalt transporters, ChlI and ChlD subunits of the CobN-dependent cobaltochelatase complex, cobalt reductase BluB, adenosyltransferase PduO, several new proteins linked to the lower ligand assembly pathway, l-threonine kinase PduX, and a large number of other hypothetical proteins. Most missing genes detected within the cobalamin biosynthetic pathways of various bacteria were identified as nonorthologous substitutes. The variable parts of the cobalamin metabolism appear to be the cobalt transport and insertion, the CobG/CbiG- and CobF/CbiD-catalyzed reactions, and the lower ligand synthesis pathway. The most interesting result of analysis of B12 elements is that B12-independent isozymes of the methionine synthase and ribonucleotide reductase are regulated by B12 elements in bacteria that have both B12-dependent and B12-independent isozymes. Moreover, B12 regulons of various bacteria are thought to include enzymes from known B12-dependent or alternative pathways.  (+info)

Glutamate mutase from Clostridium cochlearium. Purification, cobamide content and stereospecific inhibitors. (47/283)

Both components, E and S, of the adenosylcobalamin-(coenzyme B12)-dependent glutamate mutase from Clostridium cochlearium were purified. Component S (16 kDa) must be added to component E to obtain activity, although the latter contains substoichiometric amounts of component S besides the major 50-kDa subunit. The enzyme proved to be very similar to that of C. tetanomorphum as described by Barker et al. [Barker, H. A., Rooze, V., Suzuki, F. & Iodice, A. A. (1964) J. Biol. Chem. 239, 3260-3266] but component E of C. cochlearium was more stable and led to the first pure preparation. The pink component E showed a cobamide-like absorbance spectrum with a characteristic maximum at 470 nm indicating the presence of a cob(II)amide, probably Co alpha-[alpha-(aden-9-yl)]-cob(II)amide. A typical cob(II)amide signal at g = 2.23 with hyperfine and superhyperfine splitting was observed by EPR spectroscopy. A cobamide content of about 0.43 mol/mol 50-kDa subunit was determined by cyanolysis. Substitution of the migrating hydrogen at C-4 of glutamate by fluorine yielded the potent competitive inhibitor (2S,4S)-4-fluoroglutamate (Ki = 70 microM). (2R,3RS)-3-Fluoroglutamate (Ki = 600 microM) was also inhibitory. The competitive inhibition by 2-methyleneglutarate (Ki = 400 microM) and (S)-3-methylitaconate (Ki = 100 microM) but not by (RS)-2-methylglutarate suggested the transient formation of an sp2 center during catalysis. However, the presence of an N-terminal pyruvoyl residue was excluded and no evidence for the participation of another electrophilic center in the reaction was obtained.  (+info)

Adenosylcobalamin and cob(II)alamin as prosthetic groups of 2-methyleneglutarate mutase from Clostridium barkeri. (48/283)

The ultraviolet/visible spectrum of the pure pink-orange 2-methyleneglutarate mutase from Clostridium barkeri between 300-600 nm showed the presence of cobalamins; notably the peaks at 470 and 528 nm were indicative of oxygen-stable cob(II)alamin and adenosylcobalamin (coenzyme B12), respectively. Using the absorption coefficients of the isosbestic points at 340, 393 and 489 nm, the total cobalamin content was estimated as 3.7 +/- 0.3 mol/mol tetrameric enzyme (m = 300 kDa). Denaturation with 8 M urea in the presence of 2 mM dithiothreitol followed by gel chromatography and renaturation afforded an inactive enzyme which contained 40-50% of the initially bound cobalamin. This preparation could be reactivated to 95-100% by addition of adenosylcobalamin. The cobalamins were removed to 85% from the mutase by denaturation with 8 M urea in the presence of 1 M cyanide (pH 12) with irreversible loss of activity. 2-Methyleneglutarate mutase was inactivated by incubation with aquo-, cyano- or methylcobalamin; up to 50% of the activity was recovered by addition of adenosylcobalamin. Upon incubation of the mutase with [5'-3H]adenosylcobalamin about 30% of the total cobalamin was exchanged by the tritium-labelled cofactor without loss of activity. During aerobic catalysis the enzyme became sensitive towards oxygen which was accompanied by loss of activity and formation of aquocobalamin from adenosylcobalamin. EPR spectroscopy demonstrated the presence of 0.8 mol base-on cob(II)alamin/mol enzyme. Upon addition of 2-methyleneglutarate a second EPR signal of about equal intensity at g = 2.13 arose. The question of whether the oxygen-stable cob(II)alamin participates in catalysis or its complex with the enzyme represents an inactive form is currently under investigation.  (+info)