COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. (41/266)

We performed a systematic mapping of interaction domains on COP I subunits to gain novel insights into the architecture of coatomer. Using the two-hybrid system, we characterize the domain structure of the alpha-, beta'-, epsilon-COP and beta-, gamma-, delta-, zeta-COP coatomer subcomplexes and identify links between them that contribute to coatomer integrity. Our results demonstrate that the domain organization of the beta-, gamma-, delta-, zeta-COP subcomplex and AP adaptor complexes is related. Through in vivo analysis of alpha-COP truncation mutants, we characterize distinct functional domains on alpha-COP. Its N-terminal WD40 domain is dispensable for yeast cell viability and overall coatomer function, but is required for KKXX-dependent trafficking. The last approximately 170 amino acids of alpha-COP are also non-essential for cell viability, but required for epsilon-COP incorporation into coatomer and maintainance of normal epsilon-COP levels. Further, we demonstrate novel direct interactions of coatomer subunits with regulatory proteins: beta'- and gamma-COP interact with the ARF-GTP-activating protein (GAP) Glo3p, but not Gcs1p, and beta- and epsilon-COP interact with ARF-GTP. Glo3p also interacts with intact coatomer in vitro.  (+info)

RGS4 and RGS2 bind coatomer and inhibit COPI association with Golgi membranes and intracellular transport. (42/266)

COPI, a protein complex consisting of coatomer and the small GTPase ARF1, is an integral component of some intracellular transport carriers. The association of COPI with secretory membranes has been implicated in the maintenance of Golgi integrity and the normal functioning of intracellular transport in eukaryotes. The regulator of G protein signaling, RGS4, interacted with the COPI subunit beta'-COP in a yeast two-hybrid screen. Both recombinant RGS4 and RGS2 bound purified recombinant beta'-COP in vitro. Endogenous cytosolic RGS4 from NG108 cells and RGS2 from HEK293T cells cofractionated with the COPI complex by gel filtration. Binding of beta'-COP to RGS4 occurred through two dilysine motifs in RGS4, similar to those contained in some aminoglycoside antibiotics that are known to bind coatomer. RGS4 inhibited COPI binding to Golgi membranes independently of its GTPase-accelerating activity on G(ialpha). In RGS4-transfected LLC-PK1 cells, the amount of COPI in the Golgi region was considerably reduced compared with that in wild-type cells, but there was no detectable difference in the amount of either Golgi-associated ARF1 or the integral Golgi membrane protein giantin, indicating that Golgi integrity was preserved. In addition, RGS4 expression inhibited trafficking of aquaporin 1 to the plasma membrane in LLC-PK1 cells and impaired secretion of placental alkaline phosphatase from HEK293T cells. The inhibitory effect of RGS4 in these assays was independent of GTPase-accelerating activity but correlated with its ability to bind COPI. Thus, these data support the hypothesis that these RGS proteins sequester coatomer in the cytoplasm and inhibit its recruitment onto Golgi membranes, which may in turn modulate Golgi-plasma membrane or intra-Golgi transport.  (+info)

The p58-positive pre-golgi intermediates consist of distinct subpopulations of particles that show differential binding of COPI and COPII coats and contain vacuolar H(+)-ATPase. (43/266)

We have studied the structural and functional properties of the pre-Golgi intermediate compartment (IC) in normal rat kidney cells using analytical cell fractionation with p58 as the principal marker. The sedimentation profile (sediterm) of p58, obtained by analytical differential centrifugation, revealed in steady-state cells the presence of two main populations of IC elements whose average sedimentation coefficients, s(H)=1150+/-58S ('heavy') and s(L)=158+/-8S ('light'), differed from the s-values obtained for elements of the rough and smooth endoplasmic reticulum. High resolution analysis of these subpopulations in equilibrium density gradients further revealed that the large difference in their s-values was mainly due to particle size. The 'light' particle population contained the bulk of COPI and COPII coats, and redistribution of p58 to these particles was observed in transport-arrested cells, showing that the two types of elements are also compositionally distinct and have functional counterparts in intact cells. Using a specific antibody against the 16 kDa proteolipid subunit of the vacuolar H(+)-ATPase, an enrichment of the V(o )domain of the ATPase was observed in the p58-positive IC elements. Interestingly, these elements could contain both COPI and COPII coats and their density distribution was markedly affected by GTP(&ggr;)S. Together with morphological observations, these results demonstrate that, in addition to clusters of small tubules and vesicles, the IC also consists of large-sized structures and corroborate the proposal that the IC elements contain an active vacuolar H(+)-ATPase.  (+info)

Duplication of genes encoding non-clathrin coat protein gamma-COP in vertebrate, insect and plant evolution. (44/266)

Coatomer is a major component of COPI vesicles and consists of seven subunits. The gamma-COP subunit of the coatomer is believed to mediate the binding to the cytoplasmic dilysine motifs of membrane proteins. We characterized cDNAs for Copg genes encoding gamma-COP from mouse, zebrafish, Drosophila melanogaster and Bombyx mori. Two copies of Copg genes are present in vertebrates and in B. mori. Phylogenetic analysis revealed that two paralogous genes had been derived from a single ancestral gene by duplication independently in vertebrates and in B. mori. Mouse Copg1 showed ubiquitous expression with the highest level in testis. Zebrafish copg2 was biallelically expressed in hybrid larvae in contrast to its mammalian ortholog expressed in a parent-of-origin-specific manner. A phylogenetic analysis with partial plant cDNA sequences suggested that copg gene was also duplicated in the grass family (Poaceae).  (+info)

Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. (45/266)

Protein transport in the early secretory pathway requires Rab2 GTPase. This protein promotes the recruitment of soluble components that participate in protein sorting and recycling from pre-Golgi intermediates (vesicular tubular clusters (VTCs)). We previously reported that a constitutively activated form of Rab2 (Q65L) as well as Rab2 wild type promoted vesicle formation from VTCs. These vesicles contained Rab2, beta-COP, p53/gp58, and protein kinase Ciota/lambda but lacked anterograde-directed cargo. To identify other candidate Rab2 effectors, the polypeptide composition of the vesicles was further analyzed. We found that vesicles released in response to Rab2 also contained the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). To study the relationship of this enzyme to Rab2 function, we performed a quantitative binding assay to measure recruitment of GAPDH to membrane when incubated with Rab2. Rab2-treated microsomes showed a 5-10-fold increase in the level of membrane-associated GAPDH. We generated an affinity-purified anti-GAPDH polyclonal to study the biochemical role of GAPDH in the early secretory pathway. The antibody arrests transport of a reporter molecule in an assay that reconstitutes ER to Golgi traffic. Furthermore, the affinity-purified antibody blocked the ability of Rab2 to recruit GAPDH to membrane. However, the antibody did not interfere with Rab2 stimulated vesicle release. These data suggest that GAPDH is required for ER to Golgi transport. We propose that membranes incubated with anti-GAPDH and Rab2 form "dead end" vesicles that are unable to transport and fuse with the acceptor compartment.  (+info)

Localization of myocilin to the golgi apparatus in Schlemm's canal cells. (46/266)

PURPOSE: Biochemical and genetic evidence suggests that overexpression of or mutations in myocilin within the cells of the aqueous humor outflow pathway play a significant role in the development of steroid-induced and several other open-angle glaucomas. As a baseline to understanding the normal and pathologic function of myocilin, we determined the subcellular localization of myocilin in steroid-treated human Schlemm's canal endothelial (SC) cells. METHODS: SC cells were grown to confluence, treated with dexamethasone for 10 days, and then stained using antibodies against myocilin, tubulin, or beta-COP (a specific golgi protein) or vital stains for endoplasmic reticulum (ER) and golgi. Brefeldin A (BFA) and nocodazol (NZ) were used to disrupt the golgi or microtubules. RESULTS: The authors found that myocilin staining was (a) always centered around the centrosome, (b) very similar to the pattern seen with NBD-ceramide, (c) was disrupted in characteristic ways by BFA and NZ and (d) showed extensive colocalization with beta-COP. CONCLUSIONS: Results indicate that myocilin is localized to the golgi in SC cells. Such localization is consistent with myocilin being processed for secretion but is also consistent with sequence analysis and other data that suggest that myocilin or myocilin mutations might be targeted to the cytoplasmic face of the golgi, and under some circumstances play a role in or interfere with golgi or vesicle function. How such interference could eventually lead to open angle glaucoma is discussed.  (+info)

Binding of coatomer by the PEX11 C-terminus is not required for function. (47/266)

Microbodies are single membrane-bound organelles found in eukaryotes from trypanosomes to man. Although they have diverse roles in metabolism, the mechanisms and molecules involved in membrane biogenesis and matrix protein import are conserved. Similarly, the basic mechanisms and structures involved in vesicular transport are similar throughout eukaryotic evolution. The PEX11 proteins are required for the division of microbodies in trypanosomes, yeast and mammals, and a role of coatomer in this process has been suggested. We show here that the binding of trypanosome, yeast and bovine coatomers to selected peptides is identical. Coatomer binds to the C-termini of trypanosome PEX11 and rat Pex11alpha, but not yeast Pex11p or human Pex11beta. Mutations of the C-terminus of trypanosome PEX11 that eliminated coatomer binding did not affect function in yeast or trypanosomes. Thus binding of coatomer to the C-terminus of PEX11 is not required for PEX11 function.  (+info)

Regulation of the insulin and asialoglycoprotein receptors via cGMP-dependent protein kinase. (48/266)

Biotin regulation of asialoglycoprotein receptor expression and insulin receptor activity has been established in two human hepatoblastoma cell lines, Hep G2 and HuH-7. Second messenger cGMP mimics the effect of biotin on asialoglycoprotein receptor expression at the translational level. Metabolic labeling and subsequent immunoprecipitation indicate that the loss of insulin receptor activity during biotin deprivation was due to suppression of receptor synthesis. Evidence for posttranscriptional regulation of insulin receptor synthesis was provided by rapid biotin induction of receptor synthesis without an increase in gene transcript number. Addition of a cGMP-dependent protein kinase (cGK) inhibitor prevented biotin induction of the insulin and asialoglycoprotein receptors, suggesting that protein phosphorylation propagates the cGMP signal transduction cascade. Coatomer protein COPI was recently identified as the trans-acting factor that regulates in vitro translation of the asialoglycoprotein receptor. Biotin repletion of the culture medium resulted in the hyperphosphorylation of alpha-COP, which was prevented by simultaneous addition of the cGK inhibitor. These findings suggest that the end point of this cGMP signal cascade is modulated by cGK and that a phosphorylation reaction governs the expression of both receptor proteins.  (+info)