Mutation of the yeast epsilon-COP gene ANU2 causes abnormal nuclear morphology and defects in intracellular vesicular transport. (25/266)

Previously we reported an original method of visualizing the shape of yeast nuclei by the expression of green fluorescent protein (GFP)-tagged Xenopus nucleoplasmin in Saccharomyces cerevisiae. To identify components that determine nuclear structure, we searched for mutants exhibiting abnormal nuclear morphology from a collection of temperature-sensitive yeast strains expressing GFP-tagged nucleoplasmin. Four anu mutant strains (anu1-1, 2-1, 3-1 and 4-1; ANU=abnormal nuclear morphology) that exhibited strikingly different nuclear morphologies at the restrictive temperature as compared to the wild-type were isolated. The nuclei of these mutants were irregularly shaped and often consisted of multiple lobes. ANU1, 3 and 4 were found to encode known factors Sec24p, Sec13p and Sec18p, respectively, all of which are involved in the formation or fusion of intracellular membrane vesicles of protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus. On the other hand, ANU2 was not well characterized. Disruption of ANU2 (delta anu2) was not lethal but conferred temperature-sensitivity for growth. Electron microscopic analysis of anu2-1 cells revealed not only the abnormal nuclear morphology but also excessive accumulation of ER membranes. In addition, both anu2-1 and delta anu2 cells were defective in protein transport between the ER and the Golgi, suggesting that Anu2p has an important role in vesicular transport in the early secretory pathway. Here we show that ANU2 encodes a 34 kDa polypeptide, which shares a 20% sequence identity with the mammalian epsilon-COP. Our results suggest that Anu2p is the yeast homologue of mammalian epsilon-COP and the abrupt accumulation of the ER membrane caused by a blockage of the early protein transport pathway leads to alteration of nuclear morphology of the budding yeast cells.  (+info)

Membrane flow through the Golgi apparatus: specific disassembly of the cis-Golgi network by ATP depletion. (26/266)

Incubation of NRK cells for 30 to 45 minutes with 50 mM 2-deoxy-D-glucose (DOG) in glucose and pyruvate-free medium results in depletion of the cellular ATP pool and in specific disassembly of the cis-Golgi network (CGN), with the stack of Golgi cisternae (SGC) and the trans-Golgi network (TGN) remaining intact and sensitive to BFA. The disassembly of the CGN is mediated by long tubular structures extending outwards from the Golgi complex and involves microtubules. Upon removal of DOG and addition of glucose and pyruvate to the culture medium, the morphology of the CGN is slowly reestablished. Reconstruction of the CGN involves COPI/COPII-positive vesicles that resume the transport of proteins and in particular of CGN membrane proteins out of the ER. Exit of CGN membrane proteins from the ER is insensitive to BFA. In cells pretreated with nocodazole, the CGN membrane proteins are transported to the vicinity of the SGC fragments dispersed throughout the cytoplasm. Ultrastructural studies of cells engaged in the reconstruction of the CGN revealed that the CGN cisterna emerge as tubular structures extending from 0.2-0.3 microm uncoated vesicles prior to their organization on the cis-side of the SGC.  (+info)

gamma2-COP, a novel imprinted gene on chromosome 7q32, defines a new imprinting cluster in the human genome. (27/266)

We describe a novel imprinted gene, gamma 2-COP (nonclathrincoatprotein), identified in a search for expressed sequences in human chromosome 7q32 where the paternally expressed MEST gene is located. gamma 2-COP contains 24 exons and spans >50 kb of genomic DNA. Like MEST, gamma 2-COP is ubiquitously transcribed in fetal and adult tissues. In fetal tissues, including skeletal muscle, skin, kidney, adrenal, placenta, intestine, lung, chorionic plate and amnion, gamma 2-COP is imprinted and expressed from the paternal allele. In contrast to the monoallelic expression observed in these fetal tissues, biallelic expression was evident in fetal brain and liver and in adult peripheral blood. Biallelic expression in blood is supported by the demonstration of gamma 2-COP transcripts in lymphoblastoid cell lines with maternal uniparental disomy 7. Absence of paternal gamma 2-COP transcripts during embryonic development may contribute to Silver-Russell syndrome. However, on mutation scanning the only gamma 2-COP mutation detected was maternally derived. Amino acid comparison of gamma2-COP protein revealed close relation to gamma-COP, a subunit of the coatomer complex COPI, suggesting a role of gamma2-COP in cellular vesicle traffic. The existence of distinct coatomer complexes could be the basis for the functional heterogeneity of COPI vesicles in retrograde and anterograde transport and/or in cargo selection. Together, gamma 2-COP and MEST constitute a novel imprinting cluster in the human genome that may contain other, as yet unknown, imprinted genes.  (+info)

COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. (28/266)

Microinjection of the slowly hydrolyzable GTP analogue GTP(gamma)S or the ectopic expression of a GTP restricted mutant of the small GTPase arf1 (arf1[Q71L]) leads to the rapid accumulation of COPI coated vesicles and buds in living cells. This effect is blocked at 15 degrees C and by microinjection of antibodies against (beta)-COP. Anterograde and retrograde membrane protein transport markers, which have been previously shown to be incorporated into COPI vesicles between the endoplasmic reticulum and Golgi complex, are depleted from the GTP(gamma)S or arf1[Q71L] induced COPI coated vesicles and buds. In contrast, in control cells 30 to 60% of the COPI carriers co-localize with these markers. These in vivo data corroborate recent in vitro work, suggesting that GTP(gamma)S and arf1[Q71L] interfere with the sorting of membrane proteins into Golgi derived COPI vesicles, and provide the first in vivo evidence for a role of GTP hydrolysis by arf1 in the sorting of cargo into COPI coated vesicles and buds.  (+info)

ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro. (29/266)

Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  (+info)

The p24 family member p23 is required for early embryonic development. (30/266)

The p24 family of type I integral-membrane proteins, which are localised in the endoplasmic reticulum (ER), the intermediate compartment and the Golgi apparatus, are thought to function as receptors for cargo exit from the ER and in transport vesicle formation. Members of the p24 family have been found in a molecular complex and are enriched in COPI-coated vesicles, which are involved in membrane traffic between the ER and Golgi complex. Although expressed abundantly, simultaneous deletion of several family members does not appear to affect cell viability and protein secretion in yeast. In order to gain more insights into the physiological roles of different p24 proteins, we generated mice deficient in the expression of one family member, p23 (also called 24delta1, see for alternative nomenclature). In contrast to yeast genetics, in mice disruption of both p23 alleles resulted in early embryonic lethality. Inactivation of one allele led not only to reduced levels of p23 itself but also to reduced levels of other family members. The reduction in steady-state protein levels also induced structural changes in the Golgi apparatus, such as the formation of dilated saccules. The generation of mice deficient in p23 expression has revealed an essential and non-redundant role for p23 in the earliest stages of mammalian development. It has also provided genetic evidence for the participation of p24 family members in oligomeric complexes and indicates a structural role for these proteins in maintaining the integrity of the early secretory pathway.  (+info)

Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. (31/266)

Nine mutations in the switch I and switch II regions of human ADP-ribosylation factor 3 (ARF3) were isolated from loss-of-interaction screens, using two-hybrid assays with three different effectors. We then analyzed the ability of the recombinant proteins to (i) bind guanine nucleotides, (ii) activate phospholipase D1 (PLD1), (iii) recruit coatomer (COP-I) to Golgi-enriched membranes, and (iv) expand and vesiculate Golgi in intact cells. Correlations of activities in these assays were used as a means of testing specific hypotheses of ARF action, including the role of PLD1 activation in COP-I recruitment, the role of COP-I in Golgi vesiculation caused by expression of the dominant activating mutant [Q71L]ARF3, and the need for PLD1 activation in Golgi vesiculation. Because we were able to find at least one example of a protein that has lost each of these activities with retention of the others, we conclude that activation of PLD1, recruitment of COP-I to Golgi, and vesiculation of Golgi in cells are functionally separable processes. The ability of certain mutants of ARF3 to alter Golgi morphology without changes in PLD1 activity or COP-I binding is interpreted as evidence for at least one additional, currently unidentified, effector for ARF action at the Golgi.  (+info)

ARF1 regulates pH-dependent COP functions in the early endocytic pathway. (32/266)

Coat proteins of the COP family were recently shown by us and others to be involved in membrane transport in the endocytic pathway, in addition to their known functions in the biosynthetic pathway. We have also shown that membrane association of endosomal COPs depends on the acidic endosomal pH, in contrast to biosynthetic COPs. In this paper, we report that both membrane recruitment of endosomal COPs and in vitro biogenesis of transport intermediates destined for late endosomes, depend on a cytosolic factor, which we identified as the small GTP-binding protein ARF1. Our data indicate that ARF1 does not act via activation of an endosomal phospholipase D. We also find that ARF1 membrane association is regulated by the endosomal pH, and that this controls the pH-dependent association of endosomal COPs. These studies thus show that ARF1 regulates COP functions in the endocytic pathway, and indicate that ARF1 acts as the cytosolic component of a transmembrane pH-sensing mechanism.  (+info)