Group D prothrombin activators from snake venom are structural homologues of mammalian blood coagulation factor Xa. (17/178)

Procoagulant venoms of several Australian elapids contain proteinases that specifically activate prothrombin; among these, Group D activators are functionally similar to coagulation factor Xa (FXa). Structural information on this class of prothrombin activators will contribute significantly towards understanding the mechanism of FXa-mediated prothrombin activation. Here we present the purification of Group D prothrombin activators from three Australian snake venoms (Hoplocephalus stephensi, Notechis scutatus scutatus and Notechis ater niger) using a single-step method, and their N-terminal sequences. The N-terminal sequence of the heavy chain of hopsarin D (H. stephensi) revealed that a fully conserved Cys-7 was substituted with a Ser residue. We therefore determined the complete amino acid sequence of hopsarin D. Hopsarin D shows approximately 70% similarity with FXa and approximately 98% similarity with trocarin D, a Group D prothrombin activator from Tropidechis carinatus. It possesses the characteristic Gla domain, two epidermal growth factor-like domains and a serine proteinase domain. All residues important for catalysis are conserved, as are most regions involved in interactions with factor Va and prothrombin. However, there are some structural differences. Unlike FXa, hopsarin D is glycosylated in both its chains: in light-chain residue 52 and heavy-chain residue 45. The glycosylation on the heavy chain is a large carbohydrate moiety adjacent to the active-site pocket. Overall, hopsarin D is structurally and functionally similar to mammalian coagulation FXa.  (+info)

A subpopulation of platelets responds to thrombin- or SFLLRN-stimulation with binding sites for factor IXa. (18/178)

Strong agonists cause platelets to expose a procoagulant surface supporting the assembly of two important coagulation enzyme complexes. Equilibrium binding has determined the density of high affinity saturable factor IXa binding sites to be 500-600 sites/platelet. We have now used flow cytometry to visualize the binding of factor IX and IXa to thrombin- or SFLLRN-activated platelets. Concentrations of these agonists that are half-maximal or maximal in kinetic studies resulted in only a small subpopulation (4-20%) of platelets binding factor IX or IXa with the density of binding sites for factor IX being about half of that for factor IXa, consistent with previous equilibrium binding studies. A small subpopulation (5 +/- 1.5%) of platelets stimulated with either agonist also exposed annexin V binding sites, and this subpopulation of platelets also bound factor IXa. Annexin V decreased factor IXa binding in the presence or absence of factor VIIIa, and factor IXa could also decrease annexin V binding on some platelets indicating a common binding site in agreement with previous studies. All platelets binding factor IXa were positive for glycoprotein IX, at the same glycoprotein IX surface density as seen in platelets negative for factor IXa binding. These studies refine the results from equilibrium binding studies and suggest that, on average, only a small subpopulation (approximately 10%) of PAR 1-stimulated platelets expose approximately 6000 factor IXa binding sites/platelet.  (+info)

A shear-restricted pathway of platelet procoagulant activity is regulated by IQGAP1. (19/178)

Circulating blood platelets regulate the initial phase of the hemostatic response through adhesive and aggregatory events and by providing the necessary procoagulant surface for prothrombinase complex assembly and thrombin generation. The signaling pathway(s) that regulate platelet procoagulant activity are largely unknown, although they are distinct from platelet aggregatory signals linked to fibrinogen ligation to the conformationally active alpha(IIB)beta(3) integrin. We describe a novel intracellular signaling mechanism involving platelet IQGAP1 that specifically regulates the development of platelet procoagulant activity under conditions of mechanical shear stress. Murine platelets that are deficient in IQGAP1 demonstrate increased prothrombinase activity compared with wild-type littermate controls when activated by a physiological shear stress of 16 dynes/cm(2) (shear rates of 1600 s(-1)) (p < 0.0001), corresponding to approximately 2.5 times the normal shear stress, or approximately 40% degree of stenosis in coronary arteries. The exaggerated prothrombinase activity is not associated with enhanced platelet microvesiculation (cytoskeletal proteolysis) and occurs independently of the intracellular calcium release, [Ca(2+)](i), but it is specifically coupled to the alpha-granule exocytic pathway without concomitant effects on aminophospholipid exposure. These observations identify platelet IQGAP1 as an important modulator of normal hemostasis and as an appropriate pharmacological target for control of platelet procoagulant function.  (+info)

Current concepts of hemostasis: implications for therapy. (20/178)

The revised model of coagulation has implications for therapy of both hemorrhagic and thrombotic disorders. Of particular interest to anesthesiologists is the management of clotting abnormalities before, during, and after surgery. Most hereditary and acquired coagulation factor deficiencies can be managed by specific replacement therapy using clotting factor concentrates. Specific guidelines have also been developed for perioperative management of patients using anticoagulant agents that inhibit platelet or coagulation factor functions. Finally, recombinant factor VIIa has been used off-label as a hemostatic agent in some surgical situations associated with excessive bleeding that is not responsive to conventional therapy.  (+info)

Effect of reactive site loop elongation on the inhibitory activity of C1-inhibitor. (21/178)

The serine protease inhibitor C1-Inhibitor (C1-Inh) inhibits several complement- and contact-system proteases, which play an important role in inflammation. C1-Inh has a short reactive site loop (RSL) compared to other serpins. RSL length determines the inhibitory activity of serpins. We investigated the effect of RSL elongation on inhibitory activity of C1-Inh by insertion of one or two alanine residues in the RSL. One of five mutants had an increased association rate with kallikrein, but was nevertheless a poor inhibitor because of a simultaneous high stoichiometry of inhibition (>10). The association rate of the other variants was lower than that of wild-type C1-Inh. These data suggest that the relatively weak inhibitory activity of C1-Inh is not the result of its short RSL. The short RSL of C1-Inh has, surprisingly, the optimal length for inhibition.  (+info)

Methods for improved hemorrhage control. (22/178)

Trauma is the leading cause of death from age 1 to 34 years and is the fifth leading cause of death overall in the USA, with uncontrolled hemorrhage being the leading cause of potentially preventable death. Improving our ability to control hemorrhage may represent the next major hurdle in reducing trauma mortality. New techniques, devices, and drugs for hemorrhage control are being developed and applied across the continuum of trauma care: prehospital, emergency room, and operative and postoperative critical care. This brief review focuses on drugs directed at life-threatening hemorrhage. The most important of these new drugs are injectable hemostatics, fibrin foams, and dressings. The available animal studies are encouraging and human studies are required.  (+info)

Highly purified lipoteichoic acid from Staphylococcus aureus induces procoagulant activity and tissue factor expression in human monocytes but is a weak inducer in whole blood: comparison with peptidoglycan. (23/178)

Lipoteichoic acid from Staphylococcus aureus was a potent inducer of procoagulant activity in isolated mononuclear cells but not in whole blood. In contrast, staphylococcal peptidoglycan showed equal levels of potency in isolated mononuclear cells and whole blood, suggesting that peptidoglycan is an important inducer of procoagulant activity in severe sepsis involving gram-positive bacteria.  (+info)

Identification of the MMRN1 binding region within the C2 domain of human factor V. (24/178)

In platelets, coagulation cofactor V is stored in complex with multimerin 1 in alpha-granules for activation-induced release during clot formation. The molecular nature of multimerin 1 factor V binding has not been determined, although multimerin 1 is known to interact with the factor V light chain. We investigated the region in factor V important for multimerin 1 binding using modified enzyme-linked immunoassays and recombinant factor V constructs. Factor V constructs lacking the C2 region or entire light chain had impaired and absent multimerin 1 binding, respectively, whereas the B domain deleted construct had modestly reduced binding. Analyses of point mutated constructs indicated that the multimerin 1 binding site in the C2 domain of factor V partially overlaps the phosphatidylserine binding site and that the factor V B domain enhances multimerin 1 binding. Multimerin 1 did not inhibit factor V phosphatidylserine binding, and it bound to phosphatidylserine independently of factor V. There was a reduction in factor V in complex with multimerin 1 after activation, and thrombin cleavage significantly reduced factor V binding to multimerin 1. In molar excess, multimerin 1 minimally reduced factor V procoagulant activity in prothrombinase assays and only if it was added before factor V activation. The dissociation of factor V-multimerin 1 complexes following factor V activation suggests a role for multimerin 1 in delivering and localizing factor V onto platelets prior to prothrombinase assembly.  (+info)