Mate selection and the evolution of highly polymorphic self/nonself recognition genes. (25/405)

Multicellular organisms use the products of highly polymorphic genes to distinguish self from conspecific nonself cells or tissues. These allorecognition polymorphisms may regulate somatic interactions between hosts and pathogens or between competitors (to avoid various forms of parasitism), as well as reproductive interactions between mates or between gametes (to avoid inbreeding). In both cases, rare alleles may be advantageous, but it remains unclear which mechanism maintains the genetic polymorphism for specificity in self/nonself recognition. Contrary to earlier reports, we show that mate selection cannot be a strong force maintaining allorecognition polymorphism in two colonial marine invertebrates. Instead, the regulation of intraspecific competitive interactions appears to promote the evolution of polymorphisms in these species.  (+info)

Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. (26/405)

The sources and mechanisms of inorganic carbon transport for scleractinian coral calcification and photosynthesis were studied using a double labelling technique with H(14)CO(3) and (45)Ca. Clones of Stylophora pistillata that had developed into microcolonies were examined. Compartmental and pharmacological analyses of the distribution of(45)Ca and H(14)CO(3) in the coelenteron, tissues and skeleton were performed in dark or light conditions or in the presence of various seawater HCO(3)(-) concentrations. For calcification, irrespective of the lighting conditions, the major source of dissolved inorganic carbon (DIC) is metabolic CO(2) (70-75% of total CaCO(3) deposition), while only 25-30% originates from the external medium (seawater carbon pool). These results are in agreement with the observation that metabolic CO(2) production in the light is at least six times greater than is required for calcification. This source is dependent on carbonic anhydrase activity because it is sensitive to ethoxyzolamide. Seawater DIC is transferred from the external medium to the coral skeleton by two different pathways: from sea water to the coelenteron, the passive paracellular pathway is largely sufficient, while a DIDS-sensitive transcellular pathway appears to mediate the flux across calicoblastic cells. Irrespective of the source, an anion exchanger performs the secretion of DIC at the site of calcification. Furthermore, a fourfold light-enhanced calcification of Stylophora pistillata microcolonies was measured. This stimulation was only effective after a lag of 10 min. These results are discussed in the context of light-enhanced calcification. Characterisation of the DIC supply for symbiotic dinoflagellate photosynthesis demonstrated the presence of a DIC pool within the tissues. The size of this pool was dependent on the lighting conditions, since it increased 39-fold after 3 h of illumination. Passive DIC equilibration through oral tissues between sea water and the coelenteric cavity is insufficient to supply this DIC pool, suggesting that there is an active transepithelial absorption of inorganic carbon sensitive to DIDS, ethoxyzolamide and iodide. These results confirm the presence of CO(2)-concentrating mechanisms in coral cells. The tissue pool is not, however, used as a source for calcification since no significant lag phase in the incorporation of external seawater DIC was measured.  (+info)

Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. (27/405)

DsRed is a recently cloned 28-kDa fluorescent protein responsible for the red coloration around the oral disk of a coral of the Discosoma genus. DsRed has attracted tremendous interest as a potential expression tracer and fusion partner that would be complementary to the homologous green fluorescent protein from Aequorea, but very little is known of the biochemistry of DsRed. We now show that DsRed has a much higher extinction coefficient and quantum yield than previously reported, plus excellent resistance to pH extremes and photobleaching. In addition, its 583-nm emission maximum can be further shifted to 602 nm by mutation of Lys-83 to Met. However, DsRed has major drawbacks, such as strong oligomerization and slow maturation. Analytical ultracentrifugation proves DsRed to be an obligate tetramer in vitro, and fluorescence resonance energy transfer measurements and yeast two-hybrid assays verify oligomerization in live cells. Also, DsRed takes days to ripen fully from green to red in vitro or in vivo, and mutations such as Lys-83 to Arg prevent the color change. Many potential cell biological applications of DsRed will require suppression of the tetramerization and acceleration of the maturation.  (+info)

The structure of the chromophore within DsRed, a red fluorescent protein from coral. (28/405)

DsRed, a brilliantly red fluorescent protein, was recently cloned from Discosoma coral by homology to the green fluorescent protein (GFP) from the jellyfish Aequorea. A core question in the biochemistry of DsRed is the mechanism by which the GFP-like 475-nm excitation and 500-nm emission maxima of immature DsRed are red-shifted to the 558-nm excitation and 583-nm emission maxima of mature DsRed. After digestion of mature DsRed with lysyl endopeptidase, high-resolution mass spectra of the purified chromophore-bearing peptide reveal that some of the molecules have lost 2 Da relative to the peptide analogously prepared from a mutant, K83R, that stays green. Tandem mass spectrometry indicates that the bond between the alpha-carbon and nitrogen of Gln-66 has been dehydrogenated in DsRed, extending the GFP chromophore by forming C==N==C==O at the 2-position of the imidazolidinone. This acylimine substituent quantitatively accounts for the red shift according to quantum mechanical calculations. Reversible hydration of the C==N bond in the acylimine would explain why denaturation shifts mature DsRed back to a GFP-like absorbance. The C==N bond hydrolyses upon boiling, explaining why DsRed shows two fragment bands on SDS/PAGE. This assay suggests that conversion from green to red chromophores remains incomplete even after prolonged aging.  (+info)

Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (dsRed) and yellow (Citrine). (29/405)

Gene expression of intrinsically fluorescent proteins in biological systems offers new noninvasive windows into cellular function, but optimization of these probes relies on understanding their molecular spectroscopy, dynamics, and structure. Here, the photophysics of red fluorescent protein (dsRed) from discosoma (coral), providing desired longer emission/absorption wavelengths, and an improved yellow fluorescent protein mutant (Citrine) (S65G/V68L/Q69 M/S72A/T203Y) for significant comparison, are characterized by using fluorescence correlation spectroscopy and time-correlated single-photon counting. dsRed fluorescence decays as a single exponential with a 3.65 +/- 0.07-ns time constant, indicating a single emitting state/species independent of pH 4.4-9.0, in contrast with Citrine. However, laser excitation drives reversible fluorescence flicker at 10(3)-10(4) Hz between dark and bright states with a constant partition fraction f(1) = 0.42 +/- 0.06 and quantum yield of approximately 3 x 10(-3). Unlike Citrine (pKa approximately 5.7), pH-dependent proton binding is negligible (pH 3. 9-11) in dsRed. Time-resolved anisotropy of dsRed reveals rapid depolarization (211 +/- 6 ps) plus slow rotational motion (53 +/- 8 ns), in contrast with a single rotational time (16 +/- 2 ns) for Citrine. The molecular dimensions, calculated from rotational and translational diffusion, indicate that dsRed is hydrodynamically 3.8 +/- 0.4 times larger than predicted for a monomer, which suggests an oligomer (possibly a tetramer) configuration even at approximately 10(-9) M. The fast depolarization is attributed to intraoligomer energy transfer between mobile nonparallel chromophores with the initial anisotropy implying a 24 +/- 3 degrees depolarization angle. Large two-photon excitation cross sections ( approximately 100 GM at 990 nm for dsRed and approximately 50 GM at 970 nm for Citrine), advantageous for two-photon-fluorescence imaging in cells, are measured.  (+info)

The basis of prostaglandin synthesis in coral: molecular cloning and expression of a cyclooxygenase from the Arctic soft coral Gersemia fruticosa. (30/405)

In vertebrates, the synthesis of prostaglandin hormones is catalyzed by cyclooxygenase (COX)-1, a constitutively expressed enzyme with physiological functions, and COX-2, induced in inflammation and cancer. Prostaglandins have been detected in high concentrations in certain corals, and previous evidence suggested their biosynthesis through a lipoxygenase-allene oxide pathway. Here we describe the discovery of an ancestor of cyclooxygenases that is responsible for prostaglandin biosynthesis in coral. Using a homology-based polymerase chain reaction cloning strategy, the cDNA encoding a polypeptide with approximately 50% amino acid identity to both mammalian COX-1 and COX-2 was cloned and sequenced from the Arctic soft coral Gersemia fruticosa. Nearly all the amino acids essential for substrate binding and catalysis as determined in the mammalian enzymes are represented in coral COX: the arachidonate-binding Arg(120) and Tyr(355) are present, as are the heme-coordinating His(207) and His(388); the catalytic Tyr(385); and the target of aspirin attack, Ser(530). A key amino acid that determines the sensitivity to selective COX-2 inhibitors (Ile(523) in COX-1 and Val(523) in COX-2) is present in coral COX as isoleucine. The conserved Glu(524), implicated in the binding of certain COX inhibitors, is represented as alanine. Expression of the G. fruticosa cDNA afforded a functional cyclooxygenase that converted exogenous arachidonic acid to prostaglandins. The biosynthesis was inhibited by indomethacin, whereas the selective COX-2 inhibitor nimesulide was ineffective. We conclude that the cyclooxygenase occurs widely in the animal kingdom and that vertebrate COX-1 and COX-2 are evolutionary derivatives of the invertebrate precursor.  (+info)

Eumetazoan fossils in terminal proterozoic phosphorites? (31/405)

Phosphatic sedimentary rocks preserve a record of early animal life different from and complementary to that provided by Ediacaran fossils in terminal Proterozoic sandstones and shales. Phosphorites of the Doushantuo Formation, South China, contain eggs, egg cases, and stereoblastulae that document animals of unspecified phylogenetic position; small fossils containing putative spicules may specifically record the presence of sponges. Microfossils recently interpreted as the preserved gastrulae of cnidarian and bilaterian metazoans can alternatively be interpreted as conventional algal cysts and/or egg cases modified by diagenetic processes known to have had a pervasive influence on Doushantuo phosphorites. Regardless of this interpretation, evidence for Doushantuo eumetazoans is provided by millimeter-scale tubes that display tabulation and apical budding characteristic of some Cnidaria, especially the extinct tabulates. Like some Ediacaran remains, these small, benthic, colonial fossils may represent stem-group eumetazoans or stem-group cnidarians that lived in the late Proterozoic ocean.  (+info)

An inducer of molluscan metamorphosis transforms activity patterns in a larval nervous system. (32/405)

Larvae of the nudibranch mollusc Phestilla sibogae metamorphose in response to a small organic compound released into seawater by their adult prey, the scleractinian coral Porites compressa. The transformations that occur during metamorphosis, including loss of the ciliated velum (swimming organ), evacuation of the shell, and bodily elongation, are thought to be controlled by a combination of neuronal and neuroendocrine activities. Activation of peripheral chemosensory neurons by the metamorphosis-inducing compound should therefore elicit changes within the central nervous system. We used extracellular recording techniques in an attempt to detect responses of neurons within the larval central ganglia to seawater conditioned by P. compressa, to seawater conditioned by the weakly inductive coral Pocillopora damicornis, and to non-inductive seawater controls. The activity patterns within the nervous systems of semi-intact larvae changed in response to both types of coral exudates. Changes took place in two size classes of action potentials, one of which is known to be associated with velar ciliary arrests.  (+info)