Up-regulation of clusterin (sulfated glycoprotein-2) in pancreatic islet cells upon streptozotocin injection to rats. (9/535)

Clusterin is a heterodimeric glycoprotein which has been shown to play important roles in programmed cell death and/or in tissue reorganization not only during embryonic development but also in damaged tissues. Recently, we reported the transient induction of clusterin in pancreatic endocrine cells during early developmental stages of islet formation. In the present study, we have investigated the expression of clusterin in pancreatic tissue of streptozotocin-treated rats which were undergoing extensive islet tissue reorganization due to degeneration of insulin beta cells. Clusterin was found in endocrine cells identified as glucagon-secreting alpha cells at the periphery of the islet. Using immunoelectron microscopy, clusterin-positive cells showed the typical ultrastructural features of pancreatic alpha cells. In addition, colocalization of clusterin and glucagon in the same secretory granules was shown by double immunogold labeling. These results imply that clusterin is a secretory molecule having endocrine and/or paracrine actions in parallel with glucagon. Further, we noted that clusterin expression was increased in pancreatic alpha cells during the process of beta cell death upon streptozotocin injection. The increase was significant as early as 1-3 h after streptozotocin treatment prior to any morphological alteration of islet beta cell and any manifestation of hyperglycemia. The expression of clusterin was steady-stately up-regulated during the process of islet reorganization caused by streptozotocin-induced cytotoxic injury. Therefore, we suggest that clusterin might be considered as a molecule induced by both embryonic development and drug-induced reorganization of the endocrine pancreas. Since clusterin expression is up-regulated in alpha cells, but not in beta cells undergoing degeneration, it may play a protective role against the cytotoxic insult.  (+info)

Transforming growth factor beta regulates clusterin gene expression via modulation of transcription factor c-Fos. (10/535)

Transforming growth factor-beta (TGFbeta) induces gene expression of the glycoprotein clusterin in a variety of cell types via a consensus AP-1 binding site. Here, we demonstrate, by supershift analysis, that JunB, JunD, Fra1, Fra2, and c-Fos bound to AP-1 but that prior treatment of the cells with TGFbeta reduced dramatically c-Fos binding, suggesting that c-Fos might be playing a negative regulatory role in clusterin gene expression. Transient cotransfection assays in mink lung epithelial (CCL64) cells, using a human c-Fos expressing plasmid together with a clusterin promoter/reporter construct or the artificial TGFbeta-inducible reporter construct 3TPLux, revealed that c-Fos was indeed repressive for TGFbeta-induced promoter transactivation. Further, we demonstrate that in stable c-Fos-overexpressing cell lines, TGFbeta induction of endogenous clusterin mRNA, as well as clusterin promoter transactivation are blocked. Co-transfection with c-Fos deletion constructs revealed that the C-terminal region, including the homologue box 2 motif and the extreme C-terminal serine phosphorylation sites (Ser362 and Ser374) are required for repression of clusterin and 3TPLux transactivation. TGFbeta treatment of CCL64 cells resulted in the induction of c-Fos mRNA but caused no alternation in total c-Fos protein levels. The results suggest that the c-Fos represses clusterin gene expression, maintaining a low basal level in the absence of TGFbeta, and that TGFbeta, presumably through its effects on c-Fos protein synthesis and/or stability, abrogates the repression of c-Fos, thereby resulting in gene expression.  (+info)

Apolipoproteins J and E co-localise with amyloid in gelatinous drop-like and lattice type I corneal dystrophies. (11/535)

AIMS: Apolipoprotein J (apoJ) and apolipoprotein E (apoE) are thought to contribute to amyloid formation in patients with Alzheimer's disease. The aim of this investigation was to discover whether or not these apolipoproteins associate with corneal amyloid in gelatinous drop-like corneal dystrophy (GDCD) and lattice corneal dystrophy type I (LCD-I). METHODS: Corneas from three eyes of three patients with GDCD and one eye of one patient with LCD-I were examined immunohistochemically using antibodies against apoJ and apoE. Two normal corneas were similarly examined. Tissue sections of brain from a patient with Alzheimer's disease were used as positive controls for the antibodies. For all negative controls, mouse IgG was used instead of the primary antibody. RESULTS: Intense apoJ and apoE immunoreactivities were found in congophilic amyloid deposits in GDCD and LCD-I. These deposits were located subepithelially in GDCD, and subepithelially and intrastromally in LCD-I. In GDCD, immunostaining of subepithelial amyloid with anti-apoJ was noticeably stronger than with anti-apoE. CONCLUSIONS: As in senile plaques in brain from a patient with Alzheimer's disease, apoJ and apoE co-localise with amyloid in corneas with GDCD and LCD-I.  (+info)

Clusterin is expressed in the anterior and intermediate lobes, but not in the posterior pituitary of sheep. (12/535)

We have examined the expression of the ovine clusterin gene in the sheep pituitary gland, with the aim of determining its site of synthesis in this tissue. Northern blotting analysis of extracted polyadenylated RNA, using a (32)P-labelled rat clusterin cDNA probe, detected the greatest amounts of clusterin mRNA in the anterior part of dissected pituitary glands. In situ hybridisation studies showed clusterin mRNA in anterior and intermediate pituitary cells, with lower amounts in vascular endothelium and posterior pituicytes. Clusterin protein, detected by immunohistochemistry, was observed in some single secretory cells, within the capillary lumen and in cells around capillaries in the anterior and intermediate lobes, but no immunoreactivity was observed in posterior pituitary tissue. The pattern of clusterin expression in anterior and intermediate pituitary cells suggests possible roles for the protein in secretory cell turnover and/or hormone secretion or lipid uptake. Clusterin does not appear to be involved in ovine posterior pituitary hormone neurosecretion.  (+info)

Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P(1) and P(1)' residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor. (13/535)

Two peptides, SGCI and SGTI, that inhibited chymotrypsin and trypsin, respectively, were isolated from the haemolymph of Schistocerca gregaria. Their primary structures were found to be identical with SGP-2 and SGP-1, two of a series of peptides isolated from ovaries of the same species (A. Hamdaoui et al., FEBS Lett. 422 (1998) 74-78). All these peptides are composed of 35-36 amino acid residues and contain three homologous disulfide bridges. The residues imparting specificity to SGCI and SGTI were identified as Leu-30 and Arg-29, respectively. The peptides were synthesised by solid-phase peptide synthesis, and the synthetic ones displayed the same inhibition as the natural forms: SGCI is a strong inhibitor of chymotrypsin (K(i) = 6.2 x 10(-12) M), and SGTI is a rather weak inhibitor of trypsin (K(i) = 2.1 x 10(-7) M). The replacement of P(1) then P(1)' residues of SGCI with trypsin-specific residues increased affinity towards trypsin 3600- and 1100-fold, respectively, thus SGCI was converted to a strong trypsin inhibitor (K(i) = 5.0 x 10(-12) M) that retained some inhibitory affinity towards chymotrypsin (K(i) = 3.5 x 10(-8) M). The documented role of both P(1) and P(1)' highlights the importance of S(1)'P(1)' interactions in enzyme-inhibitor complexes.  (+info)

Functional and structural properties of lipid-associated apolipoprotein J (clusterin). (14/535)

Apolipoprotein J (apoJ, clusterin) is a multifunctional protein normally associated with lipids in plasma and cerebrospinal fluid, and secreted as lipoparticles by hepatocytes and astrocytes. To investigate whether the structural and functional properties of apoJ are modulated upon binding to lipids, we prepared apoJ high-density lipoprotein (HDL)-like particles employing either synthetic or plasma HDL-derived lipids. The majority of the resulting lipoparticles contained one molecule of apoJ per particle and exhibited the same alpha2 electrophoretic mobility characteristic of apoJ-containing plasma HDL. Particle size seemed to be dependent on the presence of cholesterol in the lipid mixture and ranged from diameters of 10 nm in the presence of cholesterol to 20 nm in the absence of cholesterol. CD analysis and Fourier-transform infrared spectroscopy revealed similar changes in the apoJ secondary structure induced by its incorporation into lipoparticles, namely a decrease in alpha-helix content and an increase in beta-turn structures. Two functional assays, the binding interaction with Alzheimer's amyloid beta peptides and the inhibitory activity of the complement membrane-attack complex, did not detect any changes in apoJ activity following its lipidation (P>0.05). On the contrary, the binding affinity to the cellular receptor megalin was enhanced significantly (P<0.01) after the association with lipids; the K(d) value decreased from 78.8+/-10.7 nM for the delipidated form to 37. 0+/-7.3 nM for apoJ-HDL. Although it is not known whether the structural changes observed are directly responsible for the higher receptor-binding affinity, the data suggest that the complement inhibition and amyloid beta-binding motifs are located in areas of the molecule different from those involved in the apoJ-megalin interaction.  (+info)

Postnatal development and regulation of proteins secreted in the boar epididymis. (15/535)

The number of proteins secreted by the boar epididymis increased progressively from 1 mo of age to the adult period. The first specific secretory activity was revealed at 2 mo in the distal caput (hexosaminidase, clusterin, and lactoferrin) and in the corpus (train O/HE1). Train A and glutathione peroxidase specific to the proximal caput, and trains E and M specific to the corpus, appeared at 4 mo. At 5 mo, secretion of procathepsin L occurred in the middle caput and that of mannosidase and E-RABP in the distal caput. Approximately 48% of all the proteins secreted in the adult boar epididymis were dependent on the presence of androgens, either stimulated (33.6%) or repressed (14.4%); 47% were modulated by other factors, and 5% were unregulated. In the proximal caput, 50% of the specific secreted proteins were controlled essentially by factors emanating from the testis. In more distal regions, two proteins secreted in the corpus were regulated by factors from the anterior regions. The regionalization of the secretory activity of the epididymal epithelium resulted in a specific regulation for each protein, which was modulated according to the region of expression and influenced by either testicular or epididymal factors that remain to be identified.  (+info)

Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. (16/535)

Mice lacking estrogen receptors alpha and beta were generated to clarify the roles of each receptor in the physiology of estrogen target tissues. Both sexes of alphabeta estrogen receptor knockout (alphabetaERKO) mutants exhibit normal reproductive tract development but are infertile. Ovaries of adult alphabetaERKO females exhibit follicle transdifferentiation to structures resembling seminiferous tubules of the testis, including Sertoli-like cells and expression of Mullerian inhibiting substance, sulfated glycoprotein-2, and Sox9. Therefore, loss of both receptors leads to an ovarian phenotype that is distinct from that of the individual ERKO mutants, which indicates that both receptors are required for the maintenance of germ and somatic cells in the postnatal ovary.  (+info)