Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. (57/535)

Di(n-butyl) phthalate (DBP) has antiandrogenic-like effects on the developing reproductive tract in the male rat and produces regions of interstitial cell hyperplasia and gonocyte degeneration in the developing fetal testes at maternal doses of 100-500 mg/kg/day. Neither DBP nor its primary metabolites interact with the androgen receptor in vitro. The present study was performed to examine gene expression in the fetal rat testes following in utero DBP exposure. Pregnant Sprague-Dawley rats received corn oil, DBP (500 mg/kg/day), or flutamide (reference antiandrogen, 50 mg/kg/day) by gavage daily from gestation day (GD) 12 to 21. Dose levels were selected to maximize fetal response with minimal maternal toxicity. Testes were isolated on GD 16, 19, and 21. Global changes in gene expression were determined by microarray analysis. Selected genes were further examined by quantitative RT-PCR. DBP, but not flutamide, reduced expression of the steroidogenic enzymes cytochrome P450 side chain cleavage, cytochrome P450c17, and steroidogenic acute regulatory protein. Testicular testosterone and androstenedione were decreased on GD 19 and 21, while progesterone was increased on GD 19 in DBP-exposed testes. Testosterone-repressed prostate message-2 (TRPM-2) was upregulated, while c-kit (stem cell factor receptor) mRNA was downregulated following DBP exposure. TRPM-2 and bcl-2 protein staining was elevated in GD 21 DBP-exposed Leydig and Sertoli cells. Results of this study have led to the identification of several possible mechanisms by which DBP can induce its antiandrogenic effects on the developing male reproductive tract without direct interaction with the androgen receptor. Our results suggest that the antiandrogenic effects of DBP are due to decreased testosterone synthesis. In addition, enhanced expression of cell survival proteins such as TRPM-2 and bcl-2 may be involved in DBP-induced Leydig cell hyperplasia, whereas, downregulation of c-kit may play a role in gonocyte degeneration. Future studies will explore the link between these identified gene expression alterations and ultimate adverse responses.  (+info)

Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. (58/535)

Normal human fibroblasts have a limited replicative potential in culture and eventually reach a state of irreversible growth arrest, termed senescence. In a previous study aiming to identify genes that are differentially regulated during cellular senescence we have cloned clusterin/apolipoprotein J (Apo J), a 80 kDa secreted glycoprotein. In the current report we pursue our studies and show that senescence of human diploid fibroblasts is accompanied by up-regulation of both Apo J mRNA and protein levels, but with no altered biogenesis, binding partner profile or intracellular distribution of the two Apo J forms detected. To analyze the causal relationship between senescence and Apo J protein accumulation, we stably overexpressed the Apo J gene in primary as well as in SV40 T antigen-immortalized human fibroblasts and we showed no alteration of the proliferative capacity of the transduced cells. Despite previous reports on tumor-derived cell lines, overexpression of Apo J in human fibroblasts did not provide protection against apoptosis or growth arrest induced by hydrogen peroxide. Overall, our results suggest that Apo J overexpression does not induce senescence but it is rather a secondary consequence of the senescence phenotype. To our knowledge this is the first report that provides a functional analysis of human Apo J during replicative senescence.  (+info)

Characterization and identification of epididymal factors that protect ejaculated bovine sperm during in vitro storage. (59/535)

The role of secretory epididymal factors on sperm survival and storage in bovine cauda epididymides is poorly understood. Thus, the effects of bovine epididymal epithelium fluid (BEEF) on frozen-thawed bovine sperm motility have been evaluated in vitro. Sperm motion parameters were assessed by computer-assisted sperm analysis. Compared with serum bovine proteins, BEEF efficiently sustained bovine sperm motility after a 6-h incubation period. The positive effect of BEEF on sperm motility was even more apparent using a fractionated BEEF extract (>10 kDa, 2 mg/ml). This beneficial effect was abolished when the BEEF active fraction was heat treated before incubation. A minimal 2-h BEEF preincubation period was necessary to maintain sperm motility activity and to protect sperm against oxidative injury caused by 150 microM hydrogen peroxide. The proteins from the BEEF >10-kDa fractions were biotinylated to identify the proteins that bind to the sperm surface. Five specific sperm-surface-binding proteins were revealed by Western blot analysis probed with avidin-horseradish peroxidase conjugate. These proteins were digested with trypsin for identification by matrix-assisted laser desorption ionization time-of-flight peptide mass spectrometric analyzer. Under reducing conditions, 5 bovine proteins were identified: the beta (36-kDa spot) and alpha (38-kDa spot) chains of clusterin, the beta-adrenergic receptor kinase 2 (48-kDa spot), and the antithrombin-III and the fibrinogen gamma-B chains, both corresponding to a doublet of about 50-52 kDa. These proteins are known to be present at the sperm surface in other species and could play a role in sperm protection in vivo. These results provide new insights to explain how secretory epididymal proteins sustain sperm motility during storage in vitro.  (+info)

Synergistic chemsensitization and inhibition of tumor growth and metastasis by the antisense oligodeoxynucleotide targeting clusterin gene in a human bladder cancer model. (60/535)

Clusterin expression is highly up-regulated in several normal and malignant tissues undergoing apoptosis. Although recent studies have demonstrated a protective role of clusterin expression against various kinds of apoptotic stimuli, the functional role of clusterin in the acquisition of a therapy-resistant phenotype in bladder cancer remains unknown. The objectives of this study were to determine whether antisense (AS) oligodeoxynucleotide (ODN) targeting the clusterin gene enhances apoptosis induced by cisplatin and to evaluate the usefulness of combined treatment with AS clusterin ODN and cisplatin in the inhibition of KoTCC-1 tumor growth and metastasis in a human bladder cancer KoTCC-1 model. We initially revealed the dose-dependent and sequence-specific inhibition of clusterin expression by AS clusterin ODN treatment in KoTCC-1 cells at both mRNA and protein levels. Clusterin mRNA was increased in a dose-dependent manner by cisplatin treatment at concentrations < or =10 mg/ml, and clusterin mRNA up-regulation induced by 10 mg/ml cisplatin peaked by 48-h post-treatment and began decreasing by 72-h post-treatment. Although there was no significant effect on growth of KoTCC-1 cells, AS clusterin ODN treatment significantly enhanced cisplatin chemosensitivity of KoTCC-1 cells in a dose-dependent manner, reducing the IC(50) by >50%. Characteristic apoptotic DNA ladder formation and cleavage of poly(ADP-ribose) polymerase protein were detected after combined treatment with AS clusterin ODN and cisplatin but not either agent alone. In vivo systemic administration of AS clusterin and cisplatin significantly decreased the s.c. KoTCC-1 tumor volume compared with mismatch control ODN plus cisplatin. Furthermore, after the orthotopic implantation of KoTCC-1 cells, combined treatment with AS clusterin and cisplatin significantly inhibited the growth of primary KoTCC-1 tumors, as well as the incidence of lymph node metastasis. Collectively, these findings demonstrated that clusterin helps confer a chemoresistant phenotype through inhibition of apoptosis and that combined AS clusterin ODN may be useful in enhancing the effects of cytotoxic chemotherapy in patients with bladder cancer.  (+info)

Clusterin expression in adult human normal and osteoarthritic articular cartilage. (61/535)

OBJECTIVE: To characterize the expression pattern of clusterin in adult human normal and osteoarthritic cartilage. METHODS: Clusterin mRNA expression in adult human normal and osteoarthritic cartilage was investigated by analysis of cDNA libraries, TaqMan quantitative RT-PCR, microarray and in situ hybridization. RESULTS: Sequence analysis of ESTs from adult human normal and osteoarthritic cartilage cDNA libraries demonstrated that the abundance of clusterin in these libraries was equivalent to genes which have been more commonly associated with cartilage. To examine tissue distribution, TaqMan Quantitative PCR analysis was performed using RNA from a panel of individual normal tissues. Clusterin was expressed at significant levels in cartilage, brain, liver, and pancreas. The expression of clusterin mRNA was up-regulated in early osteoarthritic vs normal cartilage when analysed by microarray analysis. Using in situ hybridization, chondrocytes of normal cartilage expressed moderate levels of clusterin. Upper mid-zone chondrocytes in cartilage with early stages of osteoarthritic disease expressed high levels of clusterin mRNA. In advanced osteoarthritic cartilage, the overall expression of clusterin was reduced. CONCLUSION: The induction of clusterin has been associated with a variety of disease states where it appears to provide a cytoprotective effect. The increased expression of clusterin mRNA in the early stages of osteoarthritis (OA) may reflect an attempt by the chondrocytes to protect and repair the tissue. In contrast, the decrease in clusterin mRNA in the advanced osteoarthritic cartilage accompanies the final degenerative stages of the disease. An understanding of the expression of clusterin in osteoarthritis may allow consideration of this protein as a marker for cartilage changes in this chronic degenerative condition.  (+info)

Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. (62/535)

Apoliprotein J (apoJ)/clusterin has attracted considerable interest based on its inducibility in multiple injury processes and accumulation at sites of remodeling, regression, and degeneration. We therefore sought to investigate apoJ/clusterin's role in kidney aging, as this may reveal the accumulated effects of diminished protection. Aging mice deficient in apoJ/clusterin developed a progressive glomerulopathy characterized by the deposition of immune complexes in the mesangium. Up to 75% of glomeruli in apoJ/clusterin-deficient mice exhibited moderate to severe mesangial lesions by 21 months of age. Wild-type and hemizygous mice exhibited little or no glomerular pathology. In the apoJ/clusterin-deficient mice, immune complexes of immunoglobulin G (IgG), IgM, IgA, and in some cases C1q, C3, and C9 were detectable as early as 4 weeks of age. Electron microscopy revealed the accumulation of electron-dense material in the mesangial matrix and age-dependent formation of intramesangial tubulo-fibrillary structures. Even the most extensively damaged glomeruli showed no evidence of inflammation or necrosis. In young apoJ/clusterin-deficient animals, the development of immune complex lesions was accelerated by unilateral nephrectomy-induced hyperfiltration. Injected immune complexes localized to the mesangium of apoJ/clusterin-deficient but not wild-type mice. These results establish a protective role of apoJ/clusterin against chronic glomerular kidney disease and support the hypothesis that apoJ/clusterin modifies immune complex metabolism and disposal.  (+info)

Involvement of VIP36 in intracellular transport and secretion of glycoproteins in polarized Madin-Darby canine kidney (MDCK) cells. (63/535)

VIP36, an intracellular lectin that recognizes high mannose-type glycans (Hara-Kuge, S., Ohkura, T., Seko, A., and Yamashita, K. (1999) Glycobiology 9, 833-839), was shown to localize not only to the early secretory pathway but also to the plasma membrane of Madin-Darby canine kidney (MDCK) cells. In the plasma membrane, VIP36 exhibited an apical-predominant distribution, the apical/basolateral ratio being approximately 2. Like VIP36, plasma membrane glycoproteins recognized by VIP36 were found in the apical and basolateral membranes in the ratio of approximately 2 to 1. In addition, secretory glycoproteins recognized by VIP36 were secreted approximately 2-fold more efficiently from the apical membrane than from the basolateral membrane. Thus, the apical/basolateral ratio of the transport of VIP36-recognized glycoproteins was correlated with that of VIP36 in MDCK cells. Upon overproduction of VIP36 in MDCK cells, the apical/basolateral ratios of both VIP36 and VIP36-recognized glycoproteins were changed from approximately 2 to approximately 4, and the secretion of VIP36-recognized glycoproteins was greatly stimulated. In contrast to the overproduction of VIP36, that of a mutant version of VIP36, which has no lectin activity, was of no effect on the distribution of glycoproteins to apical and basolateral membranes and inhibited the secretion of VIP36-recognized glycoproteins. Furthermore, the overproduction of VIP36 greatly stimulated the secretion of a major apical secretory glycoprotein of MDCK cells, clusterin, which was found to carry at least one high mannose-type glycan and to be recognized by VIP36. In contrast to the secretion of clusterin, that of a non-glycosylated apical-secretion protein, galectin-3, was not stimulated through the overproduction of VIP36. These results indicated that VIP36 was involved in the transport and sorting of glycoproteins carrying high mannose-type glycan(s).  (+info)

Clusterin protects renal tubular epithelial cells from gentamicin-mediated cytotoxicity. (64/535)

Clusterin is a heterodimeric secreted glycoprotein that is upregulated after acute renal injury. In aminoglycoside nephrotoxicity, clusterin is induced in the tubular epithelium and increased levels are found in the urine. In this study, we developed an in vitro model of gentamicin-induced cytotoxicity in renal proximal tubule cells and tested whether clusterin protected these cells from injury. LLC-PK(1) cells were incubated with varying concentrations of gentamicin in serum-free media, and cytotoxicity was quantified by lactate dehydrogenase release and confirmed by vital dye exclusion. A dose-dependent increase in cytotoxicity occurred with gentamicin concentrations up to 27 mg/ml. Clusterin decreased cytotoxicity in a dose- and time-dependent manner at 6, 12, and 24 h, whereas albumin, used as a control protein, had no effect. In contrast to the aminoglycoside model, when cells were injured by depletion of ATP, clusterin had only a minimally protective effect. LLC-PK(1) cells did not express megalin, a receptor that can mediate the uptake of both clusterin and aminoglycosides into proximal tubule cells. Uptake of gentamicin into LLC-PK(1) cells was observed despite the absence of megalin. In conclusion, clusterin specifically protects against gentamicin-induced renal tubular cell injury by a megalin-independent mechanism.  (+info)