A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. (65/2206)

Cellulosomes prepared by the cellulose affinity digestion method from Clostridium thermocellum culture supernatant hydrolysed carob galactomannan during incubation at 60 degrees C and pH 6.5. A recombinant phage expressing mannanase activity was isolated from a library of C. thermocellum genomic DNA constructed in lambdaZAPII. The cloned fragment of DNA containing a putative mannanase gene (manA) was sequenced, revealing an ORF of 1767 nt, encoding a protein (mannanase A; Man26A) of 589 aa with a molecular mass of 66816 Da. The putative catalytic domain (CD) of Man26A, identified by gene sectioning and sequence comparisons, displayed up to 32% identity with other mannanases belonging to family 26. Immediately downstream of the CD and separated from it by a short proline/threonine linker was a duplicated 24-residue dockerin motif, which is conserved in all C. thermocellum cellulosomal enzymes described thus far and mediates their attachment to the cellulosome-integrating protein (CipA). Man26A consisting of the CD alone (Man26A") was hyperexpressed in Escherichia coli BL21(DE3) and purified. The truncated enzyme hydrolysed soluble and insoluble mannan, displaying a temperature optimum of 65 degrees C and a pH optimum of 6.5, but exhibited no activity against other plant cell wall polysaccharides. Antiserum raised against Man26A" cross-reacted with a polypeptide with a molecular mass of 70000 Da that is part of the C. thermocellum cellulosome. A second variant of Man26A containing the N-terminal segment of 130 residues and the CD (Man26A") bound to ivory-nut mannan and weakly to soluble Carob galactomannan and insoluble cellulose. Man26A" consisting of the CD alone did not bind to these polysaccharides. These results indicate that the N-terminal 130 residues of mature Man26A may constitute a weak mannan-binding domain. Sequence comparisons revealed a lack of identity between this region of Man26A and other polysaccharide-binding domains, but significant identity with a region conserved in the three family 26 mannanases from the anaerobic fungus Piromyces equi.  (+info)

Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. (66/2206)

Two strains of Listeria monocytogenes, one that formed smooth colonies on agar surfaces and a varient of it that formed rough colonies, colonized the gastrointestinal tracts of germfree mice. Within 24 h after mice were inoculated orally with about 100 bacteria, the population levels per gram (wet weight) of tissue of both strains were 10(5) to 10(7) in the stomach and ileum and 10(8) to 10(9) in the cecum and colon, respectively. As detected in Gram-stained histological sections, in such gnotobiotes, the bacteria colonized the lumen in all areas of the tract and much of the mucus layer on the epithelial surface in the proximal colon. The strain that formed smooth colonies did not colonize the tracts of specific-pathogen-free mice, but did colonize, to the same levels as in germfree mice, the stomachs and bowels of ex-germfree mice previously associated with two members of the indigenous flora (Bacteroides and Clostridium). In the latter animals, however, the listeria did not form layers on the colonic epithelium as efficiently as they did in monoassociated gnotobiotes.  (+info)

NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. (67/2206)

Results from refinement of the crystal structures of P. aerogenes ferredoxin and C. pasteurianum rubredoxin determined by x-ray diffraction show that there are 15-18 NH---S bonds in the former and six in the latter with lengths in the range 3.1-3.9 A. Earlier tritium exchange experiments are consistent with the presence of these hydrogen bonds in the ferredoxin structure and show that more peptide hydrogen atoms are available for exchange in apoferredoxin than in intact ferredoxin. Four types of NH---S bonds are observed and two of these are geometrically similar to the two types of 3(10) NH---O bonds. The existence of more NH---S bonds in ferredoxin than in high potential iron protein suggests why the -2 form of the Fe4S4 cluster is preferred in ferredoxin over the -1 form found in high potential iron protein. From comparison of Cys-X-Y-Cys sequences in rubredoxin, ferredoxin, and high potential iron protein we suggest that two Cys-X-Y-Cys-Z sequences, where Z may have conformation angles similar to glycine, are required to make a one-iron cluster, no more than one Cys-X-Y-Cys-Z-Gly sequence is required to form a Fe2S2 ferredoxin, and a Cys-X-Y-Cys-Gly sequence where Y has a conformation such that the cysteines bond to different iron atoms is necessary to form the tetrameric cluster.  (+info)

The engL gene cluster of Clostridium cellulovorans contains a gene for cellulosomal manA. (68/2206)

A five-gene cluster around the gene in Clostridium cellulovorans that encodes endoglucanase EngL, which is involved in plant cell wall degradation, has been cloned and sequenced. As a result, a mannanase gene, manA, has been found downstream of engL. The manA gene consists of an open reading frame with 1,275 nucleotides encoding a protein with 425 amino acids and a molecular weight of 47, 156. ManA has a signal peptide followed by a duplicated sequence (DS, or dockerin) at its N terminus and a catalytic domain which belongs to family 5 of the glycosyl hydrolases and shows high sequence similarity with fungal mannanases, such as Agaricus bisporus Cel4 (17.3% identity), Aspergillus aculeatus Man1 (23.7% identity), and Trichoderma reesei Man1 (22.7% identity). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N-terminal amino acid sequence analyses of the purified recombinant ManA (rManA) indicated that the N-terminal region of the rManA contained a DS and was truncated in Escherichia coli cells. Furthermore, Western blot analysis indicated that ManA is one of the cellulosomal subunits. ManA production is repressed by cellobiose.  (+info)

Cloning, sequencing, heterologous expression, purification, and characterization of adenosylcobalamin-dependent D-lysine 5, 6-aminomutase from Clostridium sticklandii. (69/2206)

D-Lysine 5,6-aminomutase from Clostridium sticklandii catalyzes the 1,2-shift of the epsilon-amino group of D-lysine and reverse migration of C5(H). The two genes encoding 5,6-aminomutase have been cloned, sequenced, and expressed in Escherchia coli. They are adjacent on the Clostridial chromosome and encode polypeptides of 57. 3 and 29.2 kilodaltons. The predicted amino acid sequence includes a conserved base-off 5'-deoxyadenosylcobalamin binding motif and a 3-cysteine cluster in the small subunit, as well as a P-loop sequence in the large subunit. Activity of the recombinant enzyme exceeds that of the 5,6-aminomutase purified from C. sticklandii by 6-fold, presumably due to the absence of bound, inactive corrinoids in the recombinant enzyme. The K(m) values for adenosylcobalamin and pyridoxal 5'-phosphate are 6.6 and 1.0 microM, respectively. ATP does not have a regulatory effect on the recombinant protein. The rapid turnover associated inactivation reported for the enzyme purified from Clostridium is also seen with the recombinant form. Aminomutase activity does not depend on structural or catalytic metal ions. Electron paramagnetic resonance experiments with [(15)N-dimethylbenz-imidazole]adenosylcobalamin demonstrate base-off binding, consistent with other B(12)-dependent enzymes that break unactivated C-H bonds.  (+info)

Elucidation of enzymes in fermentation pathways used by Clostridium thermosuccinogenes growing on inulin. (70/2206)

Based on the presence and absence of enzyme activities, the biochemical pathways for the fermentation of inulin by Clostridium thermosuccinogenes DSM 5809 are proposed. Activities of nine enzymes (lactate dehydrogenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, fumarase, fumarate reductase, phosphotransacetylase, acetate kinase, pyruvate kinase, and alcohol dehydrogenase) were measured at four temperatures (37, 47, 58, and 70 degrees C). Each of the enzymes increased 1.5 to 2.0-fold in activity between 37 and 58 degrees C, but only lactate dehydrogenase, fumarate reductase, malate dehydrogenase, and fumarase increased at a similar rate between 58 and 70 degrees C. No acetate kinase activity was observed at 70 degrees C. Arrhenius energies were calculated for each of these nine enzymes and were in the range of 9.8 to 25.6 kcal/mol. To determine if a relationship existed between product formation and enzyme activity, serum bottle fermentations were completed at the four temperatures. Maximum yields (in moles per mole hexose unit) for succinate (0.23) and acetate (0.79) and for biomass (29.5 g/mol hexose unit) occurred at 58 degrees C, whereas the maximum yields for lactate (0.19) and hydrogen (0.25) and the lowest yields for acetate (0.03) and biomass (19.2 g/mol hexose unit) were observed at 70 degrees C. The ratio of oxidized products to reduced products changed significantly, from 0.52 to 0.65, with an increase in temperature from 58 to 70 degrees C, and there was an unexplained detection of increased reduced products (ethanol, lactate, and hydrogen) with a concomitant decrease in oxidized-product formation at the higher temperature.  (+info)

Lysine 2,3-aminomutase from Clostridium subterminale SB4: mass spectral characterization of cyanogen bromide-treated peptides and cloning, sequencing, and expression of the gene kamA in Escherichia coli. (71/2206)

Lysine 2,3-aminomutase (KAM, EC 5.4.3.2.) catalyzes the interconversion of L-lysine and L-beta-lysine, the first step in lysine degradation in Clostridium subterminale SB4. KAM requires S-adenosylmethionine (SAM), which mediates hydrogen transfer in a mechanism analogous to adenosylcobalamin-dependent reactions. KAM also contains an iron-sulfur cluster and requires pyridoxal 5'-phosphate (PLP) for activity. In the present work, we report the cloning and nucleotide sequencing of the gene kamA for C. subterminale SB4 KAM and conditions for its expression in Escherichia coli. The cyanogen bromide peptides were isolated and characterized by mass spectral analysis and, for selected peptides, amino acid and N-terminal amino acid sequence analysis. PCR was performed with degenerate oligonucleotide primers and C. subterminale SB4 chromosomal DNA to produce a portion of kamA containing 1,029 base pairs of the gene. The complete gene was obtained from a genomic library of C. subterminale SB4 chromosomal DNA by use of DNA probe analysis based on the 1,029-base pair fragment. The full-length gene consisted of 1,251 base pairs specifying a protein of 47,030 Da, in reasonable agreement with 47, 173 Da obtained by electrospray mass spectrometry of the purified enzyme. N- and C-terminal amino acid analysis of KAM and its cyanogen bromide peptides firmly correlated its amino acid sequence with the nucleotide sequence of kamA. A survey of bacterial genome databases identified seven homologs with 31 to 72% sequence identity to KAM, none of which were known enzymes. An E. coli expression system consisting of pET 23a(+) plus kamA yielded unsatisfactory expression and bacterial growth. Codon usage in kamA includes the use of AGA for all 29 arginine residues. AGA is rarely used in E. coli, and arginine clusters at positions 4 and 5, 25 and 27, and 134, 135, and 136 apparently compound the barrier to expression. Coexpression of E. coli argU dramatically enhanced both cell growth and expression of KAM. Purified recombinant KAM is equivalent to that purified from C. subterminale SB4.  (+info)

A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. (72/2206)

A new pathway to synthesize poly(hydroxyalkanoic acids) (PHA) was constructed by simultaneously expressing butyrate kinase (Buk) and phosphotransbutyrylase (Ptb) genes of Clostridium acetobutylicum and the two PHA synthase genes (phaE and phaC) of Thiocapsa pfennigii in Escherichia coli. The four genes were cloned into the BamHI and EcoRI sites of pBR322, and the resulting hybrid plasmid, pBPP1, conferred activities of all three enzymes to E. coli JM109. Cells of this recombinant strain accumulated PHAs when hydroxyfatty acids were provided as carbon sources. Homopolyesters of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB), or 4-hydroxyvalerate (4HV) were obtained from each of the corresponding hydroxyfatty acids. Various copolyesters of those hydroxyfatty acids were also obtained when two of these hydroxyfatty acids were fed at equal amounts: cells fed with 3HB and 4HB accumulated a copolyester consisting of 88 mol% 3HB and 12 mol% 4HB and contributing to 68.7% of the cell dry weight. Cells fed with 3HB and 4HV accumulated a copolyester consisting of 94 mol% 3HB and 6 mol% 4HV and contributing to 64.0% of the cell dry weight. Cells fed with 3HB, 4HB, and 4HV accumulated a terpolyester consisting of 85 mol% 3HB, 13 mol% 4HB, and 2 mol% 4HV and contributing to 68.4% of the cell dry weight.  (+info)