Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. (41/1215)

Clostridium perfringens type A isolates producing enterotoxin (CPE) are an important cause of food poisoning and non-food-borne human gastrointestinal (GI) diseases, including antibiotic-associated diarrhea (AAD). Recent studies suggest that C. perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal cpe gene, while CPE-associated non-food-borne GI diseases, such as AAD, are caused by plasmid cpe isolates. Those putative relationships, obtained predominantly with European isolates, were tested in the current study by examining 34 cpe-positive, C. perfringens fecal isolates from North American cases of food poisoning or AAD. These North American disease isolates were all classified as type A using a multiplex PCR assay. Furthermore, restriction fragment length polymorphism and pulsed-field gel electrophoresis genotyping analyses showed the North American AAD isolates included in this collection all have a plasmid cpe gene, but the North American food poisoning isolates all carry a chromosomal cpe gene. Western blotting demonstrated CPE expression by nearly all of these disease isolates, confirming their virulence potential. These findings with North American isolates provide important new evidence that, regardless of geographic origin or date of isolation, plasmid cpe isolates cause most CPE-associated AAD cases and chromosomal cpe isolates cause most C. perfringens type A food poisoning cases. These findings hold importance for the development of assays for distinguishing cases of CPE-associated food-borne and non-food-borne human GI illnesses and also identify potential epidemiologic tools for determining the reservoirs for these illnesses.  (+info)

Clostridium perfringens iota-toxin: mapping of receptor binding and Ia docking domains on Ib. (42/1215)

Clostridium perfringens iota-toxin is a binary toxin consisting of iota a (Ia), an ADP-ribosyltransferase that modifies actin, and iota b (Ib), which binds to a cell surface protein and translocates Ia into a target cell. Fusion proteins of recombinant Ib and truncated variants were tested for binding to Vero cells and docking with Ia via fluorescence-activated cytometry and cytotoxicity experiments. C-terminal residues (656 to 665) of Ib were critical for cell surface binding, and truncated Ib variants containing > or = 200 amino acids of the C terminus were effective Ib competitors and prevented iota cytotoxicity. The N-terminal domain (residues 1 to 106) of Ib was important for Ia docking, yet this region was not an effective competitor of iota cytotoxicity. Further studies showed that Ib lacking just the N-terminal 27 residues did not facilitate Ia entry into a target cell and subsequent cytotoxicity. Five monoclonal antibodies against Ib were also tested with each truncated Ib variant for epitope and structural mapping by surface plasmon resonance and an enzyme-linked immunosorbent assay. Each antibody bound to a linear epitope within the N terminus (residues 28 to 66) or the C terminus (residues 632 to 655). Antibodies that target the C terminus neutralized in vitro cytotoxicity and delayed the lethal effects of iota-toxin in mice.  (+info)

Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers. (43/1215)

Epsilon toxin is a potent toxin produced by Clostridium perfringens types B and D, which are responsible for a rapidly fatal enterotoxemia in animals. One of the main properties of epsilon toxin is the production of edema. We have previously found that epsilon toxin causes a rapid swelling of Madin-Darby canine kidney cells and that the toxin does not enter the cytosol and remains associated with the cell membrane by forming a large complex (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., and Popoff, M. R. (1997) J. Bacteriol. 179, 6480-6487). Here, we report that epsilon toxin induced in Madin-Darby canine kidney cells a rapid decrease of intracellular K(+), and an increase of Cl(-) and Na(+), whereas the increase of Ca(2+) occurred later. The entry of propidium iodide that was correlated with the loss of cell viability monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test indicates that epsilon toxin formed large pores. In artificial lipid bilayers, epsilon toxin caused current steps with a single-channel conductance of 60 pS in 100 mm KCl, which represented general diffusion pores. The channels were slightly selective for anions, but cations could also penetrate. Epsilon toxin formed wide and water-filled channels permeable to hydrophilic solutes up to a molecular mass of at least 1 kDa, which probably represents the basic mechanism of toxin action on target cells.  (+info)

Cellular uptake of the Clostridium perfringens binary iota-toxin. (44/1215)

The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH < or = 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 +/- 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor.  (+info)

Enterotoxin plasmid from Clostridium perfringens is conjugative. (45/1215)

Clostridium perfringens enterotoxin is the major virulence factor involved in the pathogenesis of C. perfringens type A food poisoning and several non-food-borne human gastrointestinal illnesses. The enterotoxin gene, cpe, is located on the chromosome of food-poisoning isolates but is found on a large plasmid in non-food-borne gastrointestinal disease isolates and in veterinary isolates. To evaluate whether the cpe plasmid encodes its own conjugative transfer, a C. perfringens strain carrying pMRS4969, a plasmid in which a 0.4-kb segment internal to the cpe gene had been replaced by the chloramphenicol resistance gene catP, was used as a donor in matings with several cpe-negative C. perfringens isolates. Chloramphenicol resistance was transferred at frequencies ranging from 2.0 x 10(-2) to 4.6 x 10(-4) transconjugants per donor cell. The transconjugants were characterized by PCR, pulsed-field gel electrophoresis, and Southern hybridization analyses. The results demonstrated that the entire pMRS4969 plasmid had been transferred to the recipient strain. Plasmid transfer required cell-to-cell contact and was DNase resistant, indicating that transfer occurred by a conjugation mechanism. In addition, several fragments of the prototype C. perfringens tetracycline resistance plasmid, pCW3, hybridized with pMRS4969, suggesting that pCW3 shares some similarity to pMRS4969. The clinical significance of these findings is that if conjugative transfer of the cpe plasmid occurred in vivo, it would have the potential to convert cpe-negative C. perfringens strains in normal intestinal flora into strains capable of causing gastrointestinal disease.  (+info)

Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. (46/1215)

Comparative analysis of the conjugative transposons Tn5397 from Clostridium difficile and Tn916 from Enterococcus faecalis, and the CW459tet(M) element from Clostridium perfringens, has revealed that these tetracycline-resistance elements are closely related. All three elements contain the tet(M) resistance gene and have sequence similarity throughout their central region. However, they have very different integration/excision modules. Instead of the int and xis genes that are found in Tn916, Tn5397 has a large resolvase gene, tndX. The C. perfringens element encodes the putative Int459 protein, which is a member of the integrase family of site-specific recombinases but is not closely related to Int from Tn916. Based on these studies it is concluded that the clostridial elements have a modular genetic organization and were derived independently from distinct mobile genetic elements.  (+info)

Recurrent diarrhea associated with enterotoxigenic Clostridium perfringens in 2 dogs. (47/1215)

Two dogs were diagnosed with enterotoxigenic Clostridium perfringens-associated diarrhea. Diarrhea was responsive to antimicrobial therapy, but recurred after treatment was ceased. Clostridium perfringens enterotoxin was present in feces during diarrheic episodes but not when feces were normal. Both dogs responded to a prolonged course of oral cephalexin and dietary modification.  (+info)

Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. (48/1215)

A spore cortex-lytic enzyme of Clostridium perfringens S40 which is encoded by sleC is synthesized at an early stage of sporulation as a precursor consisting of four domains. After cleavage of an N-terminal presequence and a C-terminal prosequence during spore maturation, inactive proenzyme is converted to active enzyme by processing of an N-terminal prosequence with germination-specific protease (GSP) during germination. The present study was undertaken to characterize GSP. In the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), a nondenaturing detergent which was needed for the stabilization of GSP, GSP activity was extracted from germinated spores. The enzyme fraction, which was purified to 668-fold by column chromatography, contained three protein components with molecular masses of 60, 57, and 52 kDa. The protease showed optimum activity at pH 5.8 to 8.5 in the presence of 0.1% CHAPS and retained activity after heat treatment at 55 degrees C for 40 min. GSP specifically cleaved the peptide bond between Val-149 and Val-150 of SleC to generate mature enzyme. Inactivation of GSP by phenylmethylsulfonyl fluoride and HgCl(2) indicated that the protease is a cysteine-dependent serine protease. Several pieces of evidence demonstrated that three protein components of the enzyme fraction are processed forms of products of cspA, cspB, and cspC, which are positioned in a tandem array just upstream of the 5' end of sleC. The amino acid sequences deduced from the nucleotide sequences of the csp genes showed significant similarity and showed a high degree of homology with those of the catalytic domain and the oxyanion binding region of subtilisin-like serine proteases. Immunochemical studies suggested that active GSP likely is localized with major cortex-lytic enzymes on the exterior of the cortex layer in the dormant spore, a location relevant to the pursuit of a cascade of cortex hydrolytic reactions.  (+info)