Effects of divalent cations and of phospholipase A activity on excretion of cloacin DF13 and lysis of host cells. (9/26)

Induction of cloacin DF13 synthesis in Escherichia coli harbouring plasmid CloDF13 results in the release of cloacin DF13, inhibition of growth and ultimately in lysis of the host cells. Expression of the pCloDF13-encoded protein H is essential for both the release of cloacin DF13 and the lysis of the cells. The divalent cations Mg2+ and Ca2+ interfered with the mitomycin C-induced protein H-dependent lysis, but hardly affected the release of cloacin DF13. Essentially all of the bacteriocin was released from the cells before a detectable degradation of the peptidoglycan occurred, independent of the presence of mitomycin C. Experiments with phospholipase A mutants revealed that activation of detergent-resistant phospholipase A was essential for the export of cloacin DF13 across the outer membrane and the lysis of induced cells. Transport of cloacin DF13 across the cytoplasmic membrane was mainly dependent on protein H. A revised model for the excretion of cloacin DF13 is presented.  (+info)

Effect of a mutation preventing lipid modification on localization of the pCloDF13-encoded bacteriocin release protein and on release of cloacin DF13. (10/26)

The pCloDF13-encoded bacteriocin release protein (BRP; Mr 2,871) is essential for the translocation of cloacin DF13 across the cell envelope of producing Escherichia coli cells. Overproduction of this BRP provokes lysis (quasilysis) of cells. Construction and analysis of a hybrid BRP-beta-lactamase protein (BRP-Bla) demonstrated that the BRP contains a lipid modified cysteine residue at its amino terminus and is mainly located in the outer membrane. The significance of lipid modification for the localization and functioning of the BRP was investigated. Site-directed mutagenesis was used to substitute the cysteine residue for a glycine residue in the lipobox of the BRP and the BRP-Bla protein. The mutated BRP was unable to bring about the release of cloacin DF13 and could not provide the lysis (quasilysis) of host cells. However, the mutated BRP strongly inhibited the colony-forming ability of the cells, indicating that induction of the mutated protein still affected cell viability. In contrast to the wild-type BRP-Bla protein, the mutated BRP-Bla protein was mainly located in the cytoplasmic membrane, indicating that the mutation prevented the proper localization of the protein. The results indicated that lipid modification of the BRP is required for its localization and release of cloacin DF13, but not for its lethality to host cells.  (+info)

Aerobactin utilization by Neisseria gonorrhoeae and cloning of a genomic DNA fragment that complements Escherichia coli fhuB mutations. (11/26)

Aerobactin, a dihydroxamate siderophore produced by many strains of enteric bacteria, stimulated the growth of Neisseria gonorrhoeae FA19 and F62 in iron-limiting medium. However, gonococci did not produce detectable amounts of aerobactin in the Escherichia coli LG1522 aerobactin bioassay. We probed gonococcal genomic DNA with the cloned E. coli aerobactin biosynthesis (iucABCD), aerobactin receptor (iutA), and hydroxamate utilization (fhuCDB) genes. Hybridization was detected with fhuB sequences but not with the other genes under conditions which will detect 70% or greater homology. Similar results were obtained with 21 additional strains of gonococci by colony filter hybridization. A library of DNA from N. gonorrhoeae FA19 was constructed in the phasmid vector lambda SE4, and a clone was isolated that complemented the fhuB mutation in derivatives of E. coli BU736 and BN3307. These results suggest that fhuB is a conserved gene and may play a fundamental role in iron acquisition by N. gonorrhoeae.  (+info)

Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. (12/26)

Virulent and nonvirulent isolates of avian Escherichia coli were tested for the presence of aerobactin genes by colony hybridization with a specific gene probe constructed from plasmid pABN1 (A. Bindereif and J. B. Neilands, J. Bacteriol. 153:1111-1113, 1983). Positive hybridization with the gene probe was highly correlated with virulence, as measured by the 50% lethal dose of the strains for chicks. Evidence for the expression of aerobactin genes in the virulent strains was obtained by demonstrating their susceptibility to cloacin DF13, which binds to the same receptor that binds aerobactin, and their ability to produce aerobactin, as revealed by cross-feeding the E. coli mutant WO987 (aroB fepA iuc iut+), which is unable to synthesize but capable of taking up aerobactin. We suggest that the production of aerobactin is involved in the virulence of avian septicemic E. coli.  (+info)

In vitro binding of cloacin DF13 to its purified outer membrane receptor protein and effect of peptidoglycan on bacteriocin-receptor interaction. (13/26)

The in vitro neutralization of the killing activity of cloacin DF13 by incubation with its purified receptor protein was shown to be the result of the formation of a direct and specific equimolar complex of both proteins. The binding of cloacin DF13 to its receptor protein did not result in a fragmentation of the cloacin molecules nor in the expulsion of immunity protein from the bacteriocin. The rate of the cloacin DF13-receptor interaction in vitro was found to be enhanced significantly in the presence of peptidoglycan, but lysozyme-treated peptidoglycan did not affect this interaction. Incubation of the cloacin DF13 as well as its receptor protein with peptidoglycan showed that the receptor protein but not the cloacin DF13 was able to bind to the peptidoglycan.  (+info)

Transcription of bacteriocinogenic plasmid CloDF13 in vivo and in vitro: structure of the cloacin immunity operon. (14/26)

Escherichia coli minicells harboring plasmid CloDF13 synthesized at least 25 messenger ribonucleic acid (RNA) species; three of these RNAs, a 2,400-, a 2,200-, and a 100-nucleotide RNA, were synthesized in relatively large amounts. Using insertion and deletion mutants of CloDF13 as well as an RNA blotting technique, we could demonstrate that these three RNAs are transcripts from the CloDF13 DNA region from 0 to 40%. This region contains the cloacin and immunity genes and the genetic information involved in plasmid DNA replication. A transcription map of this region is presented and discussed. The data indicate that the cloacin and immunity genes were coordinately transcribed into messenger RNAs of about 2,400 and 2,200 nucleotides, which differ in length at their 3' terminus. RNA polymerase binding studies and in vitro transcription assays indicated that transcription of these genes initiates at a promoter located around 32% on the CloDF13 map. Furthermore, it is shown that a 100-nucleotide RNA is encoded by the CloDF13 DNA region between 7.7 and 8.8% on the plasmid genome; the synthesis of this RNA proceeds in a direction opposite to the transcription of the cloacin and immunity genes.  (+info)

Cloning and expression of the cloacin DF13/aerobactin receptor of Escherichia coli (ColV-K30). (15/26)

A DNA fragment derived from the ColV-K30 plasmid and coding for both sensitivity to cloacin DF13 and Fe3+-aerobactin uptake was cloned into pBR322. The cloned fragment coded for two polypeptides with molecular masses of 74,000 (the cloacin DF13/aerobactin receptor protein) and 50,000 daltons, respectively. When grown with sufficient iron, cells harboring pFS8 (with this fragment) possessed about 10 times as many receptor protein molecules as compared with cells of Escherichia coli (ColV-K30). The synthesis of the receptor protein specified by pFS8, however, was independent of the availability of iron, in contrast to strains harboring the intact ColV-K30 plasmid. Aerobactin was taken up but not synthesized by cells harboring pFS8. No growth occurred when iron-starved cultures of these cells were incubated with Fe3+-aerobactin, suggesting that expression of other ColV-K30-encoded genes is necessary to remove the iron from the Fe3+-aerobactin complex.  (+info)

Molecular structure of the immunity gene and immunity protein of the bacteriocinogenic plasmid Clo DF13. (16/26)

The nucleotide sequence of the Clo DF13 DNA region comprising the immunity gene has been determined. We also elucidated the aminoacid sequence of the 40 N-terminal and 7 C-terminal aminoacids of the purified immunity protein. From analysis of the data obtained we were able to locate the immunity gene between 11.7 and 14.5% on the Clo DF13 map, and to determine the complete aminoacid sequence of the immunity protein. It was observed that the Clo DF13 immunity gene encodes an 85 aminoacid protein and is transcribed in the same direction as the cloacin gene. These experimental data support our model, presented elsewhere, which implicates that the cloacin and immunity genes of Clo DF13 are coordinately transcribed from the cloacin promoter. We also present DNA sequence data indicating that an extra ribosome binding site precedes the immunity gene on the polycistronic mRNA. This ribosome binding site might explain the fact that in cloacinogenic cells more immunity protein than cloacin is synthesized. The comparison of the complete aminoacid sequence of the Clo DF13 immunity protein, with the aminoacid sequence data of the purified, comparable Col E3 immunity protein revealed that both proteins have extensive homologies in primary and secondary structure, although they are exchangeable only to a low extent in vivo and in vitro. It was also observed that a lysine residue was modified in immunity protein isolated from excreted bacteriocin complexes.  (+info)