The effects of clenbuterol on satellite cell activation and the regeneration of skeletal muscle: an autoradiographic and morphometric study of whole muscle transplants in mice. (41/192)

The beta-2 agonist clenbuterol was tested for its effect on the proliferation of satellite cells in transplanted skeletal muscles. Using autoradiographic techniques it was found that satellite cells in clenbuterol treated transplants began proliferating earlier than in control animals. The effect of clenbuterol on the growth of regenerating muscle fibres was also examined using morphometric techniques, which manifested itself as hypertrophy of the fibres when compared with the controls.  (+info)

Effect of sympathetic denervation on the rate of protein synthesis in rat skeletal muscle. (42/192)

Rates of protein synthesis were investigated in skeletal muscles from rats submitted to chemical and surgical sympathectomy. Three models of sympathetic denervation were used: 1) treatment with guanethidine (100 mg.kg(-1).day(-1) sc); 2) lumbar sympathetic denervation (surgical excision of the second and third lumbar ganglia of the sympathetic chain, from which arises the postganglionic fibers to the skeletal muscles of rat hindlimb); and 3) adrenodemedullation. Protein synthesis was estimated in isolated soleus muscle by the rate of incorporation of [(14)C]tyrosine (0.1 mM, 0.05 microCi/ml) into total protein. Soleus isolated after 2 and 4 days of chemical sympathectomy or after 3 days of lumbar denervation showed a 17-20% statistically significant decrease in in vitro rates of protein synthesis. These effects were reverted by addition of 10(-5) M isoproterenol or epinephrine in vitro. Neither clenbuterol nor isoproterenol (10(-7), 10(-6), or 10(-5) M) in vitro affected the rate of protein synthesis in soleus from normal rats. On the other hand, clenbuterol or epinephrine (10(-5) M) increased by 20% the rate of protein synthesis in soleus muscles from adrenodemedullated rats and prevented its decrease in muscles from fasted rats. The data suggest that the sympathetic nervous system stimulates protein synthesis in oxidative muscles, probably through the activation of beta(2)-adrenoceptors, especially in situations of hormonal or nutritional deficiency.  (+info)

Combination therapy in ischemic stroke: synergistic neuroprotective effects of memantine and clenbuterol. (43/192)

BACKGROUND AND PURPOSE: Although excitotoxic overactivation of glutamate receptors has been identified as a major mechanism of ischemic brain damage, glutamate receptor antagonists failed in stroke trials, in most cases because of limited therapeutic windows or severe adverse effects. Therefore, we chose memantine and clenbuterol, both approved safe and efficient in their respective therapeutical categories, and examined combinations of these neuroprotectants for possible therapeutic interactions in ischemic stroke. METHODS: Combinations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine (20 mg/kg) with the beta2-adrenoceptor agonist clenbuterol (0.3 to 3 mg/kg) were tested in a mouse model of permanent focal cerebral ischemia. In addition, combinations of memantine (1 to 10 nmol/L) and clenbuterol (1 to 10 nmol/L) were examined in cultured hippocampal neurons exposed to glutamate (500 micromol/L) or staurosporine (200 nmol/L). RESULTS: The infarct size was further reduced by combination therapy as compared with effects of the respective neuroprotectants alone. Of note, in combination with memantine, the therapeutic window of clenbuterol was significantly prolonged up to 2 hours after ischemia. Experiments in postnatal cultures of rat hippocampal neurons exposed to glutamate or staurosporine confirmed that neuroprotection by combinations of memantine and clenbuterol exceeded the effects of the individual compounds. CONCLUSIONS: Combinations of memantine with clenbuterol extend the respective therapeutic window and provide synergistic cerebroprotective effects after stroke.  (+info)

Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. (44/192)

Beta-agonists and glucocorticoids are frequently coprescribed for chronic asthma treatment. In this study the effects of 4 week treatment with beta-agonist clenbuterol (CL) and glucocorticoid dexamethasone (DEX) on respiratory (diaphragm and parasternal) and limb (soleus and tibialis) muscles of the mouse were studied. Myosin heavy chain (MHC) distribution, fibres cross sectional area (CSA), glycolytic (phosphofructokinase, PFK; lactate dehydrogenase, LDH) and oxidative enzyme (citrate synthase, CS; cytochrome oxidase, COX) activities were determined. Muscle samples were obtained from four groups of adult C57/B16 mice: (1) Control (2) Mice receiving CL (CL, 1.5 mg kg(-1) day(-1) in drinking water) (3) Mice receiving DEX (DEX, 5.7 mg kg(-1) day(-1) s.c.) (4) Mice receiving both treatments (DEX + CL). As a general rule, CL and DEX showed opposite effects on CSA, MHC distribution, glycolytic and mitochondrial enzyme activities: CL alone stimulated a slow-to-fast transition of MHCs, an increase of PFK and LDH and an increase of muscle weight and fibre CSA; DEX produced an opposite (fast-to-slow transition) change of MHC distribution, a decrease of muscle weight and fibre CSA and in some case an increase of CS. The response varied from muscle to muscle with mixed muscles, as soleus and diaphragm, being more responsive than fast muscles, as tibialis and parasternal. In combined treatments (DEX + CL), the changes induced by DEX or CL alone were generally minimized: in soleus, however, the effects of CL predominated over those of DEX, whereas in diaphragm DEX prevailed over CL. Taken together the results suggest that CL might counteract the unwanted effects on skeletal muscles of chronic treatment with glucocorticoids.  (+info)

The effect of the beta2-adrenoceptor agonist prodrug BRL-47672 on cardiovascular function, skeletal muscle myosin heavy chain, and MyoD expression in the rat. (45/192)

The intracellular mechanisms that regulate changes in postnatal myosin heavy chain (MHC) expression are not well established. The major objective of this study was to examine the acute and chronic effects of administration of BRL-47672, the prodrug of the beta2-adrenoceptor agonist clenbuterol on MHC and MyoD transcription factor expression to determine whether or not changes in MHC composition are preceded by changes in MyoD protein expression. To assess to what extent the use of BRL-47672 minimized cardiovascular effects, its hemodynamic actions were compared with those of clenbuterol. The effect of BRL-47672 on heart rate, mean arterial blood pressure, and hindquarters vascular conductance was significantly less than that of clenbuterol after a single i.p. injection (250 microg kg(-1) body mass). In the main study, 4-week old rats were given BRL-47672 (900 microg kg(-1) body mass) or an equivalent volume of saline (control) daily for 1, 28, or 56 days. Soleus muscle (SOL) was excised and MHC and MyoD expression analyzed. After 4 weeks, SOL from the BRL-47672-treated animals had significantly faster MHC composition (49 +/- 2% MHCIIA) compared with those from the control animal (39 +/- 3% MHCIIA, P <0.05). MyoD expression increased by 40% after 1 day of BRL-47672 administration (P <0.05) before a change in MHC composition. In conclusion, these data suggest that increased expression of fast-type MHCIIA expression in rat SOL induced by BRL-47672 administration is preceded by changes in the level of MyoD transcription factor expression.  (+info)

Effects of chronic administration of clenbuterol on function and metabolism of adult rat cardiac muscle. (46/192)

Clenbuterol (Clen), a beta(2)-agonist, is known to produce skeletal and myocardial hypertrophy. This compound has recently been used in combination with left ventricular assist devices for the treatment of end-stage heart failure to reverse or prevent the adverse effects of unloading-induced myocardial atrophy. However, the mechanisms of action of Clen on myocardial cells have not been fully elucidated. In an attempt to clarify this issue, we examined the effects of chronic administration of Clen on Ca(2+) handling and substrate preference in cardiac muscle. Rats were treated with either 2 mg x kg(-1) x day(-1) Clen or saline (Sal) for 4 wk with the use of osmotic minipumps. Ventricular myocytes were enzymatically dissociated. Cells were field stimulated at 0.5, 1, and 2 Hz, and cytoplasmic Ca(2+) transients were monitored with the use of the fluorescent indicator indo-1 acetoxymethyl ester. Two-dimensional surface area and action potentials in current clamp were also measured. We found that in the Clen group there was significant hypertrophy at the organ and cellular levels compared with Sal. In Clen myocytes, the amplitude of the indo-1 ratio transients was significantly increased. Sarcoplasmic reticulum Ca(2+) content, estimated by rapid application of 20 mM caffeine, was significantly increased in the Clen group. The action potential was prolonged in the Clen group compared with Sal. Carbohydrate contribution to the tricarboxylic cycle (Krebs cycle) flux was increased several times in the Clen group. This increase was associated with decreased expression of peroxisome proliferator-activated receptor-alpha. This study shows that chronic administration of Clen induces cellular hypertrophy and increases oxidative carbohydrate utilization together with an increase in sarcoplasmic reticulum Ca(2+) content, which results in increased amplitude of the Ca(2+) transients. These effects could be important when Clen is used in conjunction with left ventricular assist devices treatment.  (+info)

Effect of chronic clenbuterol administration and exercise training on immune function in horses. (47/192)

Effects of longitudinal exercise training and acute intensive exercise (simulated race test) on immune function have not been reported in horses. Clenbuterol, a beta2-adrenergic agonist, is used to manage inflammatory airway disease in horses. This study investigated the interaction of 8 wk of exercise training with or without 12 wk of clenbuterol administration in horses. Twenty-three untrained standardbred mares (10 +/- 3 yr, Mean +/- SE) were used and divided into four experimental groups. Horses given clenbuterol plus exercise (CLENEX; n = 6) and clenbuterol alone (CLEN; n = 6) received 2.4 microg/kg BW of clenbuterol twice daily (in an average volume of 20 mL) on a schedule of 5 d on and 2 d off for 12 wk. The CLENEX group was also aerobically trained 3 d/wk. Mares given exercise alone (EX; n = 5) were aerobically trained for 3 d/wk, and the control group (CON; n = 6) remained sedentary. Both EX and CON horses were administered similar volumes (approximately 20 mL) of molasses twice daily. A simulated race test (SRT) resulted in an elevation in lymphocyte number postexercise (P < 0.05). There was no significant difference after acute exercise in either monocyte or granulocyte number. Acute exercise resulted in a decrease (P < 0.05) in the percentage of CD4+ and an increase (P < 0.05) in the percentage of CD8+ cells. The SRT resulted in a decreased lymphoproliferative response to pokeweed mitogen (P < 0.05). A SRT had no effect on antibody production in response to equine influenza vaccine. The EX group demonstrated greater cortisol concentrations at rest and at all other time points postexercise after completing the training regimen compared with CLENEX horses (P < 0.05). Preexercise (SRT) peripheral blood monocyte number was lower in CLENEX horses than in other treatment groups (P < 0.05). Clenbuterol and exercise training did not significantly affect post-SRT changes in leukocyte numbers. Exercise training resulted in a decrease (P < 0.05) in the percentage of CD8+ cells post-SRT compared with other groups, but the percentage of CD4+ cells was not altered by either clenbuterol or exercise conditioning. Lymphocyte proliferative response was not affected by clenbuterol or exercise treatment. Horses demonstrated responses to bouts of acute exercise as noted with other species, namely humans and rodents.  (+info)

Overexpression of beta2-adrenergic receptors in mouse liver alters the expression of gluconeogenic and glycolytic enzymes. (48/192)

In the livers of humans and many other mammalian species, beta2-adrenergic receptors (beta2-ARs) play an important role in the modulation of glucose production by glycogenolysis and gluconeogenesis. In male mice and rats, however, the expression and physiological role of hepatic beta2-ARs are rapidly lost with development under normal physiological conditions. We previously described a line of transgenic mice, F28 (Andre C, Erraji L, Gaston J, Grimber G, Briand P, and Guillet JG. Eur J Biochem 241: 417-424, 1996), which carry the human beta2-AR gene under the control of its own promoter. In these mice, hepatic beta2-AR levels are shown to increase rapidly after birth and, as in humans, be maintained at an elevated level in adulthood. F28 mice display strongly enhanced adenylyl cyclase responses to beta-AR agonists in their livers and, compared with normal mice, have increased basal hepatic adenylyl cyclase activity. In this report we demonstrate that, under normal physiological conditions, this increased beta2-AR activity affects the expression of the gluconeogenic and glycolytic key enzymes phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and l-pyruvate kinase and considerably decreases hepatic glycogen levels. Furthermore, we show that the effects of beta-adrenergic ligands on liver glycogen observed in humans are reproduced in these mice: liver glycogen levels are strongly decreased by the beta2-AR agonist clenbuterol and increased by the beta-AR antagonist propranolol. These transgenic mice open new perspectives for studying in vivo the hepatic beta2-AR system physiopathology and for testing the effects of beta-AR ligands on liver metabolism.  (+info)