Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. (73/304)

Zonulin, a protein that modulates intestinal permeability, is upregulated in several autoimmune diseases and is involved in the pathogenesis of autoimmune diabetes in the BB/Wor animal model of the disease. To verify the association between serum zonulin levels and in vivo intestinal permeability in patients with type 1 diabetes, both parameters were investigated in different stages of the autoimmune process. Forty-two percent (141 of 339) of the patients had abnormal serum zonulin levels, as compared with age-matched control subjects. The increased zonulin levels correlated with increased intestinal permeability in vivo and changes in claudin-1, claudin-2, and myosin IXB genes expression, while no changes were detected in ZO1 and occludin genes expression. When tested in serum samples collected during the pre-type 1 diabetes phase, elevated serum zonulin was detected in 70% of subjects and preceded by 3.5 +/- 0.9 years the onset of the disease in those patients who went on to develop type 1 diabetes. Combined, these results suggest that zonulin upregulation is associated with increased intestinal permeability in a subgroup of type 1 diabetic patients. Zonulin upregulation seems to precede the onset of the disease, providing a possible link between increased intestinal permeability, environmental exposure to non-self antigens, and the development of autoimmunity in genetically susceptible individuals.  (+info)

PPARgamma-regulated tight junction development during human urothelial cytodifferentiation. (74/304)

Urothelial barrier function is maintained by apical membrane plaques and intercellular tight junctions (TJ). Little is known about the composition and regulation of TJ expression in human urothelium. In this study, we have characterised the expression of TJ components in situ and their regulation in an in vitro model of differentiating normal human urothelial (NHU) cells. In normal ureteric urothelium in situ, there was a differentiation-associated profile of claudins 3, 4, 5, 7, ZO1 and occludin proteins. Proliferating NHU cells in vitro expressed predominantly claudin 1 protein and transcripts for claudins 1-5 and 7. Following induction of differentiation by pharmacological activation of PPARgamma and blockade of EGFR, there was de novo expression of claudin 3 mRNA and protein and downregulation of claudin 2 transcription. There was also a massive increase in expression of claudin 4 and 5 proteins which was due to inhibition of proteasomal degradation of claudin 4 and consequential stabilisation of the claudin 5 heterodimerisation partner. NHU cell differentiation was accompanied by relocalisation of TJ proteins to intercellular junctions. The differentiation-associated development of TJ formation in vitro reflected the stage-related TJ expression seen in situ. This was distinct from changes in TJ composition of NHU cells mediated by increasing the calcium concentration of the medium. Our results imply a role for PPARgamma and EGFR signalling pathways in regulating TJ formation in NHU cells and support the hypothesis that TJ development is an integral part of the urothelial differentiation programme.  (+info)

Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. (75/304)

Although adherent junctions have been extensively studied, the role of tight junctions in cancer cell invasion is not sufficiently explored. We investigated whether claudin-1, a component of tight junctions, regulated invasion activity in oral squamous cell carcinoma (OSC) cells. The expression of claudin-1, activity of matrix metalloproteinase (MMP)-2, and cleavage of laminin-5 gamma2 chains were assessed by Western blot analysis, immunohistochemistry, and zymography in OSC cell lines (OSC-4 and NOS-2, highly invasive; OSC-7, weakly invasive) and their xenografts in severe combined immunodeficient (SCID) mice. The influence of claudin-1 small interfering RNA (siRNA) on the invasion activity of the cell lines was also investigated. Compared with OSC-7, both OSC-4 and NOS-2 more strongly expressed claudin-1 and possessed high activities of MMP-2 and MMP-9. Tumors formed in the tongues of SCID mice xenografted with OSC-4, NOS-2, and OSC-7 immunohistochemically revealed strong, moderate, and weak expression of laminin-5 gamma2 chains, respectively, and laminin-5 gamma2 chains were secreted in the conditioned medium of the cancer cells in parallel with the in vivo results. Claudin-1 siRNA largely suppressed the invasion of OSC-4 and decreased the activation of MMP-2, the expression of membrane-type MMP-1 (MT1-MMP), and the cleavage of laminin-5 gamma2. In addition, not only antibodies against MT1-MMP and epidermal growth factor receptor (EGFR) but also MMP-2 and EGFR inhibitors strongly suppressed the invasion activity of OSC-4. These results suggest that claudin-1 up-regulates cancer cell invasion activity through activation of MT1-MMP and MMP-2, which results in enhanced cleavage of laminin-5 gamma2 chains.  (+info)

Restricted localization of claudin-16 at the tight junction in the thick ascending limb of Henle's loop together with claudins 3, 4, and 10 in bovine nephrons. (76/304)

Claudin-16 is one of the tight junction protein claudins and has been shown to contribute to reabsorption of divalent cations in the human kidney. In cattle, total deficiency of claudin-16 causes severe renal tubular dysplasia without aberrant metabolic changes of divalent cations, suggesting that bovine claudin-16 has some roles in renal tubule formation and paracellular transport that are somewhat different from those expected from the pathology of human disease. As the first step to clarify these roles, we examined the expression and distribution of claudin-16 and several other major claudin subtypes, claudins 1-4 and 10, in bovine renal tubular segments by immunofluorescence microscopy. Claudin-16 was exclusively distributed to the tight junction in the tubular segment positive for Tamm-Horsfall glycoprotein, the thick ascending limb (TAL) of Henle's loop, and was found colocalized with claudins 3, 4, and 10. This study also demonstrates that bovine kidneys possess segment-specific expression patterns for claudins 2-4 and 10 that are different from those reported for mice. Particularly, distribution of claudin-4 in the TAL and distal convoluted tubules was characteristic of bovine nephrons as were differences in the expression patterns of claudins 2 and 3. These findings demonstrate that the total lack of claudin-16 in the TAL segment is the sole cause of renal tubular dysplasia in cattle and suggest that the tight junctions in distinct tubular segments including the TAL have barrier functions in paracellular permeability that are different among animal species.  (+info)

The claudin gene family: expression in normal and neoplastic tissues. (77/304)

BACKGROUND: The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. METHODS: We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. RESULTS: We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. CONCLUSION: Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4.  (+info)

The claudin superfamily protein nsy-4 biases lateral signaling to generate left-right asymmetry in C. elegans olfactory neurons. (78/304)

Early in C. elegans development, signaling between bilaterally symmetric AWC olfactory neurons causes them to express different odorant receptor genes. AWC left-right asymmetry is stochastic: in each animal, either the left or the right neuron randomly becomes AWC(ON), and the other neuron becomes AWC(OFF). Here we show that the nsy-4 gene coordinates the lateral signaling that diversifies AWC(ON) and AWC(OFF) neurons. nsy-4 mutants generate 2 AWC(OFF) neurons, as expected if communication between the AWC neurons is lost, whereas overexpression of nsy-4 results in 2 AWC(ON) neurons. nsy-4 encodes a transmembrane protein related to the gamma subunits of voltage-activated calcium channels and the claudin superfamily; it interacts genetically with calcium channels and antagonizes a calcium-to-MAP kinase cascade in the neuron that becomes AWC(ON). Genetic mosaic analysis indicates that nsy-4 functions both cell-autonomously and nonautonomously in signaling between AWC neurons, providing evidence for lateral signaling and feedback that coordinate asymmetric receptor choice.  (+info)

Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. (79/304)

BACKGROUND: Regulation of tissue remodelling and ovarian permeability by intercellular adhesion complexes may be involved in normal and pathological ovarian function. Therefore, the occurrence, distribution and hormonal control of the adherens junction protein vascular endothelial cadherin (VE-cadherin) and the tight junction proteins occludin and claudin in the human corpus luteum (CL) were investigated. METHODS: CLs from patients undergoing hysterectomy for benign reasons were enucleated during early, mid- and late stages of the functional luteal phase and after HCG rescue in vivo. Immunostaining for occludin, claudins 1 and 5 and VE-cadherin was carried out on fixed tissue. Endothelial cells, granulosa lutein cells and theca lutein cells were identified by reference to serial sections immunostained for CD34, 17alpha-hydroxylase and 3beta-hydroxy-steroid-dehydrogenase. Quantitative analyses were performed using image analyses. RESULTS: Occludin was localized to the plasma membrane of granulosa lutein cells and endothelial cells but was absent in theca lutein cells. Claudin 1 was exclusively localized to the plasma membrane of steroidogenic cells. Claudin 5 and VE-cadherin were only present in endothelial cells. After HCG administration in vivo, adherens and tight junction proteins were significantly down-regulated (P < 0.05). CONCLUSIONS: The decrease of junctional proteins after HCG treatment suggests a hormonal control of tight and adherens junctions in the CL associated with tissue remodelling and an increase in luteal permeability during early pregnancy.  (+info)

Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. (80/304)

BACKGROUND: Giardia lamblia causes infection of the small intestine, which leads to malabsorption and chronic diarrhoea. AIM: To characterise the inherent pathomechanisms of G lamblia infection. METHODS: Duodenal biopsy specimens from 13 patients with chronic giardiasis and from controls were obtained endoscopically. Short-circuit current (I(SC)) and mannitol fluxes were measured in miniaturised Ussing chambers. Epithelial and subepithelial resistances were determined by impedance spectroscopy. Mucosal morphometry was performed and tight junction proteins were characterised by immunoblotting. Apoptotic ratio was determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling staining. RESULTS: In giardiasis, mucosal surface area per unit serosa area was decreased to 75% (3%) of control, as a result of which epithelial resistance should increase. Instead, epithelial resistance of giardiasis biopsy specimens was decreased (19 (2) vs 25 (2) Omega cm(2); p<0.05) whereas mannitol flux was not significantly altered (140 (27) vs 105 (16) nmol/h/cm(2)). As structural correlate, reduced claudin 1 expression and increased epithelial apoptosis were detected. Furthermore, basal I(SC) increased from 191 (20) in control to 261 (12) microA/h/cm(2) in giardiasis. The bumetanide-sensitive portion of I(SC) in giardiasis was also increased (51 (5) vs 20 (9) microA/h/cm(2) in control; p<0.05). Finally, phlorizin-sensitive Na(+)-glucose symport was reduced in patients with giardiasis (121 (9) vs 83 (14) microA/h/cm(2)). CONCLUSIONS: G lamblia infection causes epithelial barrier dysfunction owing to down regulation of the tight junction protein claudin 1 and increased epithelial apoptoses. Na(+)-dependent d-glucose absorption is impaired and active electrogenic anion secretion is activated. Thus, the mechanisms of diarrhoea in human chronic giardiasis comprise leak flux, malabsorptive and secretory components.  (+info)