Internalization and sequestration of the human prostacyclin receptor. (1/386)

Prostacyclin (PGI(2)), the major product of cyclooxygenase in macrovascular endothelium, mediates its biological effects through its cell surface G protein-coupled receptor, the IP. PKC-mediated phosphorylation of human (h) IP is a critical determinant of agonist-induced desensitization (Smyth, E. M., Hong Li, W., and FitzGerald, G. A. (1998) J. Biol. Chem. 273, 23258-23266). The regulatory events that follow desensitization are unclear. We have examined agonist-induced sequestration of hIP. Human IP, tagged at the N terminus with hemagglutinin (HA) and fused at the C terminus to the green fluorescent protein (GFP), was coupled to increased cAMP (EC(50) = 0.39 +/- 0.09 nm) and inositol phosphate (EC(50) = 86. 6 +/- 18.3 nm) generation when overexpressed in HEK 293 cells. Iloprost-induced sequestration of HAhIP-GFP, followed in real time by confocal microscopy, was partially colocalized to clathrin-coated vesicles. Iloprost induced a time- and concentration-dependent loss of cell surface HA, indicating receptor internalization, which was prevented by inhibitors of clathrin-mediated trafficking and partially reduced by cotransfection of cells with a dynamin dominant negative mutant. Sequestration (EC(50) = 27.6 +/- 5.7 nm) was evident at those concentrations of iloprost that induce PKC-dependent desensitization. Neither the PKC inhibitor GF109203X nor mutation of Ser-328, the site for PKC phosphorylation, altered receptor sequestration indicating that, unlike desensitization, internalization is PKC-independent. Deletion of the C terminus prevented iloprost-induced internalization, demonstrating the critical nature of this region for sequestration. Internalization was unaltered by cotransfection of cells with G protein-coupled receptor kinases (GRK)-2, -3, -5, -6, arrestin-2, or an arrestin-2 dominant negative mutant, indicating that GRKs and arrestins do not play a role in hIP trafficking. The hIP is sequestered in response to agonist activation via a PKC-independent pathway that is distinct from desensitization. Trafficking is dependent on determinants located in the C terminus, is GRK/arrestin-independent, and proceeds in part via a dynamin-dependent clathrin-coated vesicular endocytotic pathway although other dynamin-independent pathways may also be involved.  (+info)

Deltorphin II-induced rapid desensitization of delta-opioid receptor requires both phosphorylation and internalization of the receptor. (2/386)

Similar to other G protein-coupled receptors, rapid phosphorylation of the delta-opioid receptor in the presence of agonist has been reported. Hence, agonist-induced desensitization of the delta-opioid receptor has been suggested to be via the receptor phosphorylation, arrestin-mediated pathway. However, due to the highly efficient coupling between the delta-opioid receptor and the adenylyl cyclase, the direct correlation between the rates of receptor phosphorylation and receptor desensitization as measured by the adenylyl cyclase activity could not be established. In the current studies, using an ecdysone-inducible expression system to control the delta-opioid receptor levels in HEK293 cells, we could demonstrate that the rate of deltorphin II-induced receptor desensitization is dependent on the receptor level. Only at receptor concentrations +info)

Properties of GST-CALM expressed in E. coli. (3/386)

Clathrin-coated vesicles (CCVs) are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. CCVs are composed of clathrin and assembly proteins. The clathrin assembly protein lymphoid myeloid leukemia (CALM) gene, encodes a homologoue of the neuronal clathrin assembly protein AP180. In this study, we characterized the properties of the CALM expressed in E. coli. The molecular weight of bacterially expressed GST-CALM fusion protein was approximately 105 kD on SDS-PAGE. The CALM protein could promote clathrin triskelia into clathrin cages and could bind the preformed clathrin cage. However, 33 kD N-terminal domain of CALM could not bind pre-assembled clathrin cages, but assemble clathrin triskelia into clathrin cages. The CALM protein was bound to SH3 domain through N-terminal domain1, in vitro. The CALM protein is proteolyzed by caspase 3, caspase 8 and calpain through C-terminal domain.  (+info)

A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. (4/386)

Pep12p is a yeast syntaxin located primarily in late endosomes. Using mutagenesis of a green fluorescent protein chimera we have identified a sorting signal FSDSPEF, which is required for transport of Pep12p from the exocytic pathway to late endosomes, from which it can, when overexpressed, reach the vacuole. When this signal is mutated, Pep12p instead passes to early endosomes, a step that is determined by its transmembrane domain. Surprisingly, Pep12p is then specifically retained in early endosomes and does not go on to late endosomes. By testing appropriate chimeras in mutant strains, we found that FSDSPEF-dependent sorting was abolished in strains lacking Gga1p and Gga2p, Golgi-associated coat proteins with homology to gamma adaptin. In the gga1 gga2 double mutant endogenous Pep12p cofractionated with the early endosome marker Tlg1p, and recycling of Snc1p through early endosomes was defective. Pep12p sorting was also defective in cells lacking the clathrin heavy or light chain. We suggest that specific and direct delivery of proteins to early and late endosomes is required to maintain the functional heterogeneity of the endocytic pathway and that the GGA proteins, probably in association with clathrin, help create vesicles destined for late endosomes.  (+info)

The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. (5/386)

The heterotetrameric adaptor protein complex AP-3 has been shown to function in the sorting of proteins to the endosomal/lysosomal system. However, the mechanism of AP-3 recruitment onto membranes is poorly understood, and it is still uncertain whether AP-3 nucleates clathrin-coated vesicles. Using purified components, we show that AP-3 and clathrin are recruited onto protein-free liposomes and Golgi-enriched membranes by a process that requires ADP-ribosylation factor (ARF) and GTP but no other proteins or nucleotides. The efficiency of recruitment onto the two sources of membranes is comparable and independent of the composition of the liposomes. Clathrin binding occurred in a cooperative manner as a function of the membrane concentration of AP-3. Thin-section electron microscopy of liposomes and Golgi-enriched membranes that had been incubated with AP-3, clathrin, and ARF.GTP showed the presence of clathrin-coated buds and vesicles. These results establish that AP-3-containing clathrin-coated vesicles form in vitro and are consistent with AP-3-dependent protein transport being mediated by clathrin-coated vesicles.  (+info)

Cellular internalization of cytolethal distending toxin from Haemophilus ducreyi. (6/386)

The chancroid bacterium Haemophilus ducreyi produces a toxin (HdCDT) which is a member of the recently discovered family of cytolethal distending toxins (CDTs). These protein toxins prevent the cyclin-dependent kinase cdc2 from being activated, thus blocking the transition of cells from the G(2) phase into mitosis, with the consequent arrest of intoxicated cells in G(2). It is not known whether these toxins act by signaling from the cell surface or intracellularly only. Here we report that HdCDT has to undergo at least internalization before being able to act. Cellular intoxication was inhibited (i) by removal of clathrin coats via K(+) depletion, (ii) by treatment with drugs that inhibit receptor clustering into coated pits, and (iii) in cells genetically manipulated to fail in clathrin-dependent endocytosis. Intoxication was also completely inhibited in cells treated with bafilomycin A1 or nocodazole and in cells incubated at 18 degrees C, i.e., under conditions known to block the fusion of early endosomes with downstream compartments. Moreover, disruption of the Golgi complex by treatment with brefeldin A or ilimaquinone blocked intoxication. In conclusion, our data indicate that HdCDT enters cells via clathrin-coated pits and has to be transported via the Golgi complex in order to intoxicate cells. This is the first member of the family of CDTs for which cellular internalization and some details of the pathway have been demonstrated.  (+info)

Impaired membrane traffic in defective ether lipid biosynthesis. (7/386)

The first steps of ether lipid biosynthesis are exclusively localized to peroxisomes and hence some peroxisomal disorders are characterized by a severe deficiency of plasmalogens, the main ether lipids in humans. Here we report on gene defects of plasmalogen biosynthesis, chromosomal localization of the corresponding genes and, as a consequence of plasmalogen deficiency, on structural alterations of caveolae, clathrin-coated pits, endoplasmic reticulum and Golgi cisternae, as well as on the reduced rate of transferrin receptor cycling. The data suggest that plasmalogens, analogous to cholesterol, are essential for correct membrane functioning and their deficiency results in impaired membrane trafficking.  (+info)

Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. (8/386)

Within the clathrin-coated vesicle (CCV) cycle, coat assembly drives the internalization of receptors from the cell surface and disassembly allows for the processing of internalized ligands. The heat shock cognate protein, hsc70, has been implicated in regulating coat disassembly. We find that in cells overexpressing ATPase-deficient hsc70 mutants, uncoating of CCVs is inhibited in vivo, and the majority of unassembled cytosolic clathrin shifts to an assembled pool that cofractionates with AP1 and AP2. Surprisingly, this assembled pool of coat proteins accumulates in the absence of cargo receptors, suggesting that disruption of hsc70 activity may cause misassembly of empty clathrin cages. The strongest effect of overexpression of hsc70 mutants is a block in transferrin receptor (TfnR) recycling, which cannot be accounted for by the degree of inhibition of uncoating of endocytic CCVs. These results suggest that hsc70 participates in multiple transport and/or sorting events between endosomal compartments. Additionally, the mutant-expressing cells are defective at internalizing transferrin. In the most potent case, the initial rate of uptake is inhibited 10-fold, and TfnR levels double at the cell surface. Our findings demonstrate that hsc70 indeed regulates coat disassembly and also suggest that this chaperone broadly modulates clathrin dynamics throughout the CCV cycle.  (+info)