Essential role of PI3Kdelta and PI3Kgamma in thymocyte survival. (33/144)

Class 1 phosphoinositide 3-kinases (PI3Ks), consisting of PI3Kalpha, beta, gamma, and delta, are a family of intracellular signaling molecules that play important roles in cell-mediated immune responses. In thymocytes, however, their role is less clear, although PI3Kgamma is postulated to partially contribute to pre-TCR-dependent differentiation. We now report that PI3Kdelta, in conjunction with PI3Kgamma, is required for thymocyte survival and ultimately for T-cell production. Surprisingly, genetic deletion of the p110delta and p110gamma catalytic subunits resulted in a dramatic reduction in thymus size, cellularity, and lack of corticomedullary differentiation. Total thymocyte counts in these animals were 27-fold lower than in wild-type (WT) controls because of a diminished number of CD4+ CD8+ double-positive (DP) cells and were associated with T-cell depletion in blood and in secondary lymphoid organs. Moreover, this alteration in the DP population was intrinsic to thymocytes, because the reconstitution of p110gammadelta-/- animals with WT fetal liver cells restored the proportions of all thymocyte populations to those in WT controls. The observed defects were related to massive apoptosis in the DP population; TCRB expression, pre-TCR selection, and generation of DP cells appeared relatively unperturbed. Thus, class 1 PI3Ks work in concert to protect developing thymocytes from apoptosis.  (+info)

Membrane electrical activity elicits inositol 1,4,5-trisphosphate-dependent slow Ca2+ signals through a Gbetagamma/phosphatidylinositol 3-kinase gamma pathway in skeletal myotubes. (34/144)

Tetanic electrical stimulation of myotubes evokes a ryanodine receptor-related fast calcium signal, during the stimulation, followed by a phospholipase C/inositol 1,4,5-trisphosphate-dependent slow calcium signal few seconds after stimulus end. L-type calcium channels (Cav 1.1, dihydropyridine receptors) acting as voltage sensors activate an unknown signaling pathway involved in phospholipase C activation. We demonstrated that both G protein and phosphatidylinositol 3-kinase were activated by electrical stimulation, and both the inositol 1,4,5-trisphosphate rise and slow calcium signal induced by electrical stimulation were blocked by pertussis toxin, by a Gbetagamma scavenger peptide, and by phosphatidylinositol 3-kinase inhibitors. Immunofluorescence using anti-phosphatidylinositol 3-kinase gamma antibodies showed a clear location in striations within the cytoplasm, consistent with a position near the I band region of the sarcomere. The time course of phosphatidylinositol 3-kinase activation, monitored in single living cells using a pleckstrin homology domain fused to green fluorescent protein, was compatible with sequential phospholipase Cgamma1 activation as confirmed by phosphorylation assays for the enzyme. Co-transfection of a dominant negative form of phosphatidylinositol 3-kinase gamma inhibited the phosphatidylinositol 3-kinase activity as well as the slow calcium signal. We conclude that Gbetagamma/phosphatidylinositol 3-kinase gamma signaling pathway is involved in phospholipase C activation and the generation of the slow calcium signal induced by tetanic stimulation. We postulate that membrane potential fluctuations in skeletal muscle cells can activate a pertussis toxin-sensitive G protein, phosphatidylinositol 3-kinase, phospholipase C pathway toward modulation of long term, activity-dependent plastic changes.  (+info)

Leukocyte phosphoinositide-3 kinase {gamma} is required for chemokine-induced, sustained adhesion under flow in vivo. (35/144)

During inflammation, leukocytes roll along the wall of postcapillary venules scanning the surface for immobilized CXCL1, a chemokine that triggers firm adhesion by activating CXCR2 on the neutrophil. PI-3K are signaling molecules important in cellular processes, ranging from cellular differentiation to leukocyte migration. PI-3Kgamma can be activated directly by the betagamma dimer of heterotrimeric G proteins coupled to CXCR2. Here, we used in vivo and ex vivo intravital microscopy models to test the role of PI-3Kgamma in leukocyte arrest. PI-3Kgamma null mice showed an 80% decrease in CXCL1-induced leukocyte adhesion in venules of the exteriorized mouse cremaster muscle. In wild-type mice, rolling leukocytes showed rapid and sustained adhesion, but in PI-3Kgamma(-/-) mice, adhesion was not triggered at all or was transient, suggesting that absence of PI-3Kgamma interferes with integrin bond strengthening. Wild-type mice reconstituted with PI-3Kgamma null bone marrow showed a 50% decrease in CXCL1-induced leukocyte adhesion. In a blood-perfused micro-flow chamber, leukocytes from PI-3Kgamma(-/-) mice showed a defect in adhesion on a P-selectin/ICAM-1/CXCL1 substrate, indicating that leukocyte PI-3Kgamma was required for adhesion. The adhesion defect in PI-3Kgamma(-/-) mice was as severe as that in mice lacking LFA-1, the major integrin responsible for neutrophil adhesion. We conclude that the gamma isoform of PI-3K must be functional in leukocytes to allow efficient adhesion from rolling in response to chemokine stimulation.  (+info)

Use of the GRP1 PH domain as a tool to measure the relative levels of PtdIns(3,4,5)P3 through a protein-lipid overlay approach. (36/144)

We describe a novel approach to the relative quantification of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] and its application to measure, in neutrophils, the activation of phosphoinositide 3-kinase (PI3K). This protein-lipid overlay-based assay allowed us to confirm and extend the observations, first, that N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation of primed human neutrophils leads to a transient and biphasic increase in PtdIns(3,4,5)P(3) levels and, second, that the ability of fMLP to stimulate PtdIns(3,4,5)P(3) accumulation in neutrophils isolated from mice carrying a Ras-insensitive ('DASAA') knock-in of PI3Kgamma (p110gamma(DASAA/DASAA)) is substantially dependent on the Ras binding domain of PI3Kgamma.  (+info)

A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. (37/144)

Recent observations using multiphoton intravital microscopy (MP-IVM) have uncovered an unexpectedly high lymphocyte motility within peripheral lymph nodes (PLNs). Lymphocyte-expressed intracellular signaling molecules governing interstitial movement remain largely unknown. Here, we used MP-IVM of murine PLNs to examine interstitial motility of lymphocytes lacking the Rac guanine exchange factor DOCK2 and phosphoinositide-3-kinase (PI3K)gamma, signaling molecules that act downstream of G protein-coupled receptors, including chemokine receptors (CKRs). T and B cells lacking DOCK2 alone or DOCK2 and PI3Kgamma displayed markedly reduced motility inside T cell area and B cell follicle, respectively. Lack of PI3Kgamma alone had no effect on migration velocity but resulted in increased turning angles of T cells. As lymphocyte egress from PLNs requires the sphingosine-1-phosphate (S1P) receptor 1, a G(alphai) protein-coupled receptor similar to CKR, we further analyzed whether DOCK2 and PI3Kgamma contributed to S1P-triggered signaling events. S1P-induced cell migration was significantly reduced in T and B cells lacking DOCK2, whereas T cell-expressed PI3Kgamma contributed to F-actin polymerization and protein kinase B phosphorylation but not migration. These findings correlated with delayed lymphocyte egress from PLNs in the absence of DOCK2 but not PI3Kgamma, and a markedly reduced cell motility of DOCK2-deficient T cells in close proximity to efferent lymphatic vessels. In summary, our data support a central role for DOCK2, and to a lesser extent T cell-expressed PI3Kgamma, for signal transduction during interstitial lymphocyte migration and S1P-mediated egress.  (+info)

Targeting polymorphonuclear leukocytes in acute myocardial infarction. (38/144)

Several studies have recognized the strong impact that the acute myocardial infarctions (AMI) have on the morbidity and mortality of patients affected by cardiovascular diseases. Still open, however, is the field concerning the mediators and the pathways involved in the etiology of this cardiovascular event. The present review would support the relatively new discovered role that the polymorphonuclear leukocytes (PMNs) have in the pathogenesis of the AMI, through a brief analysis of past and ongoing research. Particularly, it is reviewed here the possibility that inhibition of the activity of PMNs and inhibition of the signaling pathways related to their activity may result useful in AMI and may improve the prognosis of this pathology. This review, indeed, presents and discusses new data on one of the lipid kinase, the phosphoinositide 3-kinase gamma (PI3Kg), and its role in neutrophil recruitment during AMI.  (+info)

Dissociation between the translocation and the activation of Akt in fMLP-stimulated human neutrophils--effect of prostaglandin E2. (39/144)

PGE(2) and other cAMP-elevating agents are known to down-regulate most functions stimulated by fMLP in human polymorphonuclear neutrophils. We reported previously that the inhibitory potential of PGE(2) resides in its capacity to suppress fMLP-stimulated PI-3Kgamma activation via the PGE(2) receptor EP(2) and hence, to decrease phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] formation. Akt activity is stimulated by fMLP through phosphorylation on threonine 308 (Thr308) and serine 473 (Ser473) by 3-phosphoinositide-dependent kinase 1 (PDK1) and MAPK-AP kinase (APK)-APK-2 (MAPKAPK-2), respectively, in a PI-3K-dependent manner. Despite the suppression of fMLP-induced PI-3Kgamma activation observed in the presence of PGE(2), we show that Akt is fully phosphorylated on Thr308 and Ser473. However, fMLP-induced Akt translocation is decreased markedly in this context. PGE(2) does not affect the phosphorylation of MAPKAPK-2 but decreases the translocation of PDK1 induced by fMLP. Other cAMP-elevating agents such as adenosine (Ado) similarly block the fMLP-induced PI-3Kgamma activation process but do not inhibit Akt phosphorylation. However, Akt activity stimulated by fMLP is down-regulated slightly by agonists that elevate cAMP levels. Whereas protein kinase A is not involved in the maintenance of Akt phosphorylation, it is required for the inhibition of Akt translocation by PGE(2). Moreover, inhibition of fMLP-stimulated PI-3Kdelta activity by the selective inhibitor IC87114 only partially affects the late phase of Akt phosphorylation in the presence of PGE(2). Taken together, these results suggest that cAMP-elevating agents, such as PGE(2) or Ado, are able to induce an alternative mechanism of Akt activation by fMLP in which the translocation of Akt to PI(3,4,5)P(3)-enriched membranes is not required prior to its phosphorylation.  (+info)

Leukocyte PI3Kgamma and PI3Kdelta have temporally distinct roles for leukocyte recruitment in vivo. (40/144)

Phosphoinositide 3-kinases (PI3Ks) have been considered important in leukocyte motility. PI3Kgamma, the class I(B) PI3K, expressed prominently in leukocytes and also in endothelial cells, mediates leukocyte functional responses induced by chemoattractants. To reveal its role in leukocyte recruitment, we used intravital microscopy to directly visualize leukocyte rolling, adhesion, and emigration in postcapillary venules in PI3Kgamma-deficient (PI3Kgamma(-/-)) mice. We report here that PI3Kgamma deficiency had no significant effects on leukocyte rolling flux or rolling velocity and minor effects on adhesion (30% to 35%) in response to CXC chemokine MIP-2 (CXCL2) or KC (CXCL1). However, leukocyte emigration was severely impaired in PI3Kgamma(-/-) mice in an early (first 90 minutes) response to MIP-2 or KC. Chimeric mice receiving bone marrow transplants revealed that this early response was entirely dependent upon PI3Kgamma in neutrophils but not parenchymal cells (endothelium and others). Identical responses were observed when endogenous chemokine production was induced by TNFalpha; leukocyte emigration was reduced in PI3Kgamma(-/-) mice. More prolonged responses to MIP-2 (for 4 to 5 hours) or TNFalpha (6 to 8 hours) were almost entirely PI3Kgamma independent and largely dependent on PI3Kdelta. Our results reveal that leukocyte emigration response to CXC chemokines is entirely dependent upon PI3Kgamma or PI3Kdelta, but these are nonoverlapping, temporally distinct events in inflamed tissues in vivo.  (+info)