Intraguild predation behaviour of ladybirds in semi-field experiments explains invasion success of Harmonia axyridis. (9/11)

 (+info)

Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents. (10/11)

The main aim of this study was to isolate and characterize the active compounds from the hexane extract of the fruit peels of Citrus aurantiifolia, which showed activity against one sensitive and three monoresistant (isoniazid, streptomycin or ethambutol) strains of Mycobacterium tuberculosis H37Rv. The active extract was fractionated by column chromatography, yielding the following major compounds: 5-geranyloxypsoralen (1); 5-geranyloxy-7-methoxycoumarin (2); 5,7-dimethoxycoumarin (3); 5-methoxypsoralen (4); and 5,8-dimethoxypsoralen (5). The structures of these compounds were elucidated by 1D and 2D NMR spectroscopy. In addition, GC-MS analysis of the hexane extract allowed the identification of 44 volatile compounds, being 5,7-dimethoxycoumarin (15.79%), 3-methyl-1,2-cyclopentanedione (8.27%), 1-methoxy-ciclohexene (8.0%), corylone (6.93%), palmitic acid (6.89%), 5,8-dimethoxypsoralen (6.08%), a-terpineol (5.97%), and umbelliferone (4.36%), the major constituents. Four isolated coumarins and 16 commercial compounds identified by GC-MS were tested against M. tuberculosis H37Rv and three multidrug-resistant M. tuberculosis strains using the Microplate Alamar Blue Assay. The constituents that showed activity against all strains were 5 (MICs = 25-50 mg/mL), 1 (MICs = 50-100 mg/mL), palmitic acid (MICs = 25-50 mg/mL), linoleic acid (MICs = 50-100 mg/mL), oleic acid (MICs = 100 mg/mL), 4-hexen-3-one (MICs = 50-100 mg/mL), and citral (MICs = 50-100 mg/mL). Compound 5 and palmitic acid were the most active ones. The antimycobacterial activity of the hexane extract of C. aurantifolia could be attributed to these compounds.  (+info)

Generation and expression in plants of a single-chain variable fragment antibody against the immunodominant membrane protein of Candidatus phytoplasma aurantifolia. (11/11)

Witches' broom of lime is a disease caused by Candidatus Phytoplasma aurantifolia, which represents the most significant global threat to the production of lime trees (Citrus aurantifolia). Conventional disease management strategies have shown little success, and new approaches based on genetic engineering need to be considered. The expression of recombinant antibodies and fragments thereof in plant cells is a powerful approach that can be used to suppress plant pathogens. We have developed a single-chain variable fragment antibody (scFvIMP6) against the immunodominant membrane protein (IMP) of witches' broom phytoplasma and expressed it in different plant cell compartments. We isolated scFvIMP6 from a naive scFv phage display library and expressed it in bacteria to demonstrate its binding activity against both recombinant IMP and intact phytoplasma cells. The expression of scFvIMP6 in plants was evaluated by transferring the scFvIMP6 cDNA to plant expression vectors featuring constitutive or phloem specific promoters in cassettes with or without secretion signals, therefore causing the protein to accumulate either in the cytosol or apoplast. All constructs were transiently expressed in Nicotiana benthamiana by agroinfiltration, and antibodies of the anticipated size were detected by immunoblotting. Plant-derived scFvIMP6 was purified by affinity chromatography, and specific binding to recombinant IMP was demonstrated by enzyme-linked immunosorbent assay. Our results indicate that scFvIMP6 binds with high activity and can be used for the detection of Ca. Phytoplasma aurantifolia and is also a suitable candidate for stable expression in lime trees to suppress witches' broom of lime.  (+info)