Loading...
(1/1204) Effect of shellfish calcium on the apparent absorption of calcium and bone metabolism in ovariectomized rats.

Fossil shellfish powder (FS) and Ezo giant scallop shell powder (EG) were rendered soluble with lactate and citrate under decompression (FSEx and EGEx, respectively) and we examined the effects of lactate-citrate solubilization of FS and EG on mineral absorption, tissue mineral contents, serum biochemical indices and bone mineral density (BMD) in ovariectomized (OVX) rats. The apparent absorption ratios of minerals tended to be high in the rats fed with the solubilized mineral sources, those in the FSEx group being significantly higher than in the FS group. There was no significant difference in the tibia mineral content among the OVX groups. BMD at the distal femoral diaphysis was significantly increased by FSEx and EGEx feeding. It is suggested that solubilization with lactate and citrate under decompression increased the solubility and bioavailability of calcium from such natural sources of shellfish calcium as FS and EG.  (+info)

(2/1204) Citric acid production from xylan and xylan hydrolysate by semi-solid culture of Aspergillus niger.

Citric acid production from xylan and xylan hydrolysate was done by Aspergillus niger Yang no. 2 cultivated in a semi-solid culture using bagasse as a carrier. Yang no. 2 produced 72.4 g/l and 52.6 g/l of citric acid in 5 d from 140 g/l of xylose and arabinose, respectively. Yang no. 2 produced 51.6 g/l of citric acid in 3 d from a concentrated xylan hydrolysate prepared by cellulase treatment, containing 100 g/l of reducing sugars. Moreover, Yang no. 2 directly produced 39.6 g/l of citric acid maximally in 3 d from 140 g/l of xylan.  (+info)

(3/1204) Down regulation by iron of prostaglandin E2 production by human synovial fibroblasts.

OBJECTIVE: To examine the effect of iron on the prostaglandin (PG) E2 production by human synovial fibroblasts in vitro. METHODS: Human synovial fibroblasts were isolated from synovial tissue of rheumatoid arthritis (RA) and osteoarthritis (OA) patients and cultured in medium. Synovial fibroblasts were stimulated by human recombinant interleukin (IL) 1 beta (0.1-10 ng/ml) with or without ferric citrate (Fe-citrate, 0.01-1 mM). The amount of PGE2 in the culture medium was measured by an enzyme linked immunosorbent assay. RESULTS: The production of PGE2 by the synovial fibroblasts was increased by stimulation with IL1 beta at all concentrations tested. Fe-citrate but not sodium citrate (Na-citrate) down regulated the production of PGE2 by the synovial fibroblasts, both with and without stimulation by IL1 beta. Fe-citrate inhibited the spontaneous PGE2 production by the cells in a dose dependent manner, and a maximum inhibition by Fe-citrate was observed at the concentration of 0.1 mM with IL1 beta stimulation. The down regulation by iron was reversed by the co-addition of desferrioxamine (100 micrograms/ml), an iron chelator. CONCLUSION: Iron down regulates the PGE2 production by synovial fibroblasts in vitro.  (+info)

(4/1204) Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs.

Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes + citric acid; hexa(sulphobutyl)fullerenes + phosphoramidon + citric acid; dimethylthiourea (DMTU) + citric acid; and DMTU + phosphoramidon + citric acid. Hexa(sulphobutyl)fullerenes and DMTU are scavengers of oxygen radicals while phosphoramidon is an inhibitor of the major degradation enzyme for tachykinins. Animals were anaesthetized, paralyzed, and artificially ventilated. Each animal was given 50 breaths of 4 ml saline or citric acid aerosol. We measured dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 (FEV0.1), and maximal expiratory flow at 30% total lung capacity (Vmax30) to evaluate the degree of airway constriction. Citric acid, but not saline, aerosol inhalation caused marked decreases in Crs, FEV0.1 and Vmax30, indicating marked airway constriction. This constriction was significantly attenuated by either hexa(sulphobutyl)fullerenes or by DMTU. In addition, phosphoramidon significantly reversed the attenuating action of hexa(sulphobutyl)fullerenes, but not that of DMTU. Citric acid aerosol inhalation caused increases in both lucigenin- and t-butyl hydroperoxide-initiated chemiluminescence counts, indicating citric acid-induced increase in oxygen radicals and decrease in antioxidants in bronchoalveolar lavage fluid. These alterations were significantly suppressed by either hexa(sulphobutyl)fullerenes or DMTU. An elastase inhibitor eglin-c also significantly attenuated citric acid-induced airway constriction, indicating the contributing role of elastase in this type of constriction. We conclude that both oxygen radicals and elastase play an important role in tachykinin-mediated, citric acid-induced airway constriction.  (+info)

(5/1204) Citrate ions enhance taste responses to amino acids in the largemouth bass.

The glossopharyngeal (IX) taste system of the largemouth bass, Micropterus salmoides, is highly selective to amino acids and is poorly responsive to trisodium citrate; however, IX taste responses to specific concentrations of L- and D-arginine and L-lysine but not L-proline were enhanced by citrate but not sodium ions. Binary mixtures of L-arginine (3 x 10(-4)M and 10(-3)M) or D-arginine (10(-3)M) + trisodium citrate (10(-3)M; pH 7-9) resulted in enhanced taste activity, whereas binary mixtures of higher concentrations (10(-2)M and 10(-1)M) of L- or D-arginine + 10(-3)M trisodium citrate were not significantly different from the response to the amino acid alone. Under continuous adaptation to 10(-3)M citrate, taste responses to L-arginine were also enhanced at the identical concentrations previously indicated, but responses to 10(-2)M and 10(-1)M L-arginine were significantly suppressed. Under continuous adaptation to 10(-2)M L-arginine, taste responses to 10(-2)M, 10(-1)M, and 10(0) M citrate were significantly enhanced. Cellular concentrations of both citrate and amino acids in prey of the carnivorous largemouth bass are sufficient for this taste-enhancing effect to occur naturally during consummatory feeding behavior. Citrate acting as a calcium chelator is presented as a possible mechanism of action for the enhancement effect.  (+info)

(6/1204) Trophoblast cell line resistance to NK lysis mainly involves an HLA class I-independent mechanism.

The lack of classical HLA molecules on trophoblast prevents allorecognition by maternal T lymphocytes, but poses the problem of susceptibility to NK lysis. Expression of the nonclassical class I molecule, HLA-G, on cytotrophoblast may provide the protective effect. However, the class I-negative syncytiotrophoblast escapes NK lysis by maternal PBL. In addition, while HLA-G-expressing transfectants of LCL.721.221 cells are protected from lymphokine-activated killer lysis, extravillous cytotrophoblast cells and HLA-G-expressing choriocarcinoma cells (CC) are not. The aim of this work was therefore to clarify the role of HLA class I expression on trophoblast cell resistance to NK lysis and on their susceptibility to lymphokine-activated killer lysis. Our results showed that both JAR (HLA class I-negative) and JEG-3 (HLA-G- and HLA-Cw4-positive) cells were resistant to NK lysis by PBL and were equally lysed by IL-2-stimulated PBL isolated from a given donor. In agreement, down-regulating HLA class I expression on JEG-3 cells by acid treatment, masking these molecules or the putative HLA-G (or HLA-E) receptor CD94/NKG2 and the CD158a/p58.1 NKR with mAbs, and inducing self class I molecule expression on JAR cells did not affect NK or LAK lysis of CC. These results demonstrate that the resistance of CC to NK lysis mainly involves an HLA class I-independent mechanism(s). In addition, we show that the expression of a classical class I target molecule (HLA-B7) on JAR cells is insufficient to induce lysis by allospecific polyclonal CTL.  (+info)

(7/1204) Regional citrate anticoagulation in continuous venovenous hemofiltration in critically ill patients with a high risk of bleeding.

BACKGROUND: Systemic heparinization is associated with a high rate of bleeding when used to maintain patency of the extracorporeal circuit during continuous renal replacement therapy (CRRT) in critically ill patients. Regional anticoagulation can be achieved with citrate, but previously described techniques are cumbersome and associated with metabolic complications. METHODS: We designed a simplified system for delivering regional citrate anticoagulation during continuous venovenous hemofiltration (CVVH). We evaluated filter life and hemorrhagic complications in the first 17 consecutive patients who received this therapy at our institution. Blood flow rate was set at 180 ml/min. Ultrafiltration rate was maintained at 2.0 liters/hr and citrate-based replacement fluid (trisodium citrate 13.3 mM, sodium chloride 100 mM, magnesium chloride 0.75 mM, dextrose 0.2%) was infused proximal to the filter to maintain the desired fluid balance. Calcium gluconate was infused through a separate line to maintain a serum-ionized calcium level of 1.0 to 1.1 mM. RESULTS: All patients were critically ill and required mechanical ventilation and vasopressor therapy. Systemic heparin anticoagulation was judged to be contraindicated in all of the patients. A total of 85 filters were used, of which 64 were lost because of clotting, with a mean life span of 29.5 +/- 17.9 hours. The remaining 21 filters were discontinued for other reasons. Control of fluid and electrolyte balance and azotemia was excellent (mean serum creatinine after 48 to 72 hr of treatment was 2.4 +/- 1.2 mg/dl). No bleeding episodes occurred. Two patients, one with septic shock and the other with fulminant hepatic failure, developed evidence for citrate toxicity without a significant alteration in clinical status. Nine patients survived (52.9%). CONCLUSION: Our simplified technique of regional anticoagulation with citrate is an effective and safe form of anticoagulation for CVVH in critically ill patients with a high risk of bleeding.  (+info)

(8/1204) Comparative absorption of calcium sources and calcium citrate malate for the prevention of osteoporosis.

Anthropologically speaking, humans were high consumers of calcium until the onset of the Agricultural Age, 10,000 years ago. Current calcium intake is one-quarter to one-third that of our evolutionary diet and, if we are genetically identical to the Late Paleolithic Homo sapiens, we may be consuming a calcium-deficient diet our bodies cannot adjust to by physiologic mechanisms. Meta-analyses of calcium and bone mass studies demonstrate supplementation of 500 to 1500 mg calcium daily improves bone mass in adolescents, young adults, older men, and postmenopausal women. Calcium citrate malate has high bioavailability and thus has been the subject of calcium studies in these populations. Positive effects have been seen in prepubertal girls, adolescents, and postmenopausal women. The addition of trace minerals and vitamin D in separate trials has improved the effect of calcium citrate malate on bone density and shown a reduction of fracture risk.  (+info)