Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. (41/177)

KaiA, KaiB, and KaiC are essential proteins of the circadian clock in the cyanobacterium Synechococcus elongatus PCC 7942. The phosphorylation cycle of KaiC that occurs in vitro after mixing the three proteins and ATP is thought to be the master oscillation governing the circadian system. We analyzed the temporal profile of complexes formed between the three Kai proteins. In the phosphorylation phase, KaiA actively and repeatedly associated with KaiC to promote KaiC phosphorylation. High levels of phosphorylation of KaiC induced the association of the KaiC hexamer with KaiB and inactivate KaiA to begin the dephosphorylation phase, which is closely linked to shuffling of the monomeric KaiC subunits among the hexamer. By reducing KaiC phosphorylation, KaiB dissociated from KaiC, reactivating KaiA. We also confirmed that a similar model can be applied in cyanobacterial cells. The molecular model proposed here provides mechanisms for circadian timing systems.  (+info)

Circadian rhythmicity by autocatalysis. (42/177)

The temperature compensated in vitro oscillation of cyanobacterial KaiC phosphorylation, the first example of a thermodynamically closed system showing circadian rhythmicity, only involves the three Kai proteins (KaiA, KaiB, and KaiC) and ATP. In this paper, we describe a model in which the KaiA- and KaiB-assisted autocatalytic phosphorylation and dephosphorylation of KaiC are the source for circadian rhythmicity. This model, based upon autocatalysis instead of transcription-translation negative feedback, shows temperature-compensated circadian limit-cycle oscillations with KaiC phosphorylation profiles and has period lengths and rate constant values that are consistent with experimental observations.  (+info)

A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. (43/177)

KaiA, KaiB, and KaiC clock proteins from cyanobacteria and ATP are sufficient to reconstitute the KaiC phosphorylation rhythm in vitro, whereas almost all gene promoters are under the control of the circadian clock. The mechanism by which the KaiC phosphorylation cycle drives global transcription rhythms is unknown. Here, we report that RpaA, a potential DNA-binding protein that acts as a cognate response regulator of the KaiC-interacting kinase SasA, mediates between KaiC phosphorylation and global transcription rhythms. Circadian transcription was severely attenuated in sasA (Synechococcus adaptive sensor A)- and rpaA (regulator of phycobilisome-associated)-mutant cells, and the phosphotransfer activity from SasA to RpaA changed dramatically depending on the circadian state of a coexisting Kai protein complex in vitro. We propose a model in which the SasA-RpaA two-component system mediates time signals from the enzymatic oscillator to drive genome-wide transcription rhythms in cyanobacteria. Moreover, our results indicate the presence of secondary output pathways from the clock to transcription control, suggesting that multiple pathways ensure a genome-wide circadian system.  (+info)

Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. (44/177)

Circadian rhythms are endogenous cellular programs that time metabolic and behavioral events to occur at optimal times in the daily cycle. Light and dark cycles synchronize the endogenous clock with the external environment through a process called entrainment. Previously, we identified the bacteriophytochrome-like circadian input kinase CikA as a key factor for entraining the clock in the cyanobacterium Synechococcus elongatus PCC 7942. Here, we present evidence that CikA senses not light but rather the redox state of the plastoquinone pool, which, in photosynthetic organisms, varies as a function of the light environment. Furthermore, CikA associates with the Kai proteins of the circadian oscillator, and it influences the phosphorylation state of KaiC during resetting of circadian phase by a dark pulse. The abundance of CikA varies inversely with light intensity, and its stability decreases in the presence of the quinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The pseudo-receiver domain of CikA is crucial for sensitivity to DBMIB, and it binds the quinone directly, a demonstration of a previously unrecognized ligand-binding role for the receiver fold. Our results suggest that resetting the clock in S. elongatus is metabolism-dependent and that it is accomplished through the interaction of the circadian oscillator with CikA.  (+info)

No promoter left behind: global circadian gene expression in cyanobacteria. (45/177)

Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a clock system that appears to be similar to those of eukaryotes in many ways. On the other hand, the KaiABC-based core cyanobacterial clockwork is clearly different from the transcription-translation feedback loop model of eukaryotic clocks in that the cyanobacterial clock system regulates gene expression patterns globally, and specific clock gene promoters are not essential in mediating the circadian feedback loop. A novel model, the oscilloid model, proposes that the KaiABC oscillator ultimately mediates rhythmic changes in the status of the cyanobacterial chromosome, and these topological changes underlie the global rhythms of transcription. The authors suggest that this model represents one of several possible modes of regulating gene expression by circadian clocks, even those of eukaryotes.  (+info)

labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. (46/177)

In the cyanobacterium Synechococcus elongatus PCC 7942, circadian timing is transmitted from the KaiABC-based central oscillator to the transcription factor RpaA via the KaiC-interacting histidine kinase SasA to activate transcription, thereby generating rhythmic circadian gene expression. However, KaiC can also repress circadian gene expression, including its own. The mechanism and significance of this negative feedback regulation have been unclear. Here, we report a novel gene, labA (low-amplitude and bright), that is required for negative feedback regulation of KaiC. Disruption of labA abolished transcriptional repression caused by overexpression of KaiC and elevated the trough levels of circadian gene expression, resulting in a low-amplitude phenotype. In contrast, overexpression of labA significantly lowered circadian gene expression. Furthermore, genetic analysis indicated that labA and sasA function in parallel pathways to regulate kaiBC expression, whereas rpaA functions downstream from labA for kaiBC expression. These results suggest that temporal information from the KaiABC-based oscillator diverges into a LabA-dependent negative pathway and a SasA-dependent positive pathway, and then converges onto RpaA to generate robust circadian gene expression. It is likely that quantitative information of KaiC is transmitted to RpaA through LabA, whereas SasA mediates the state of the KaiABC-based oscillator.  (+info)

Functioning and robustness of a bacterial circadian clock. (47/177)

Cyanobacteria are the simplest known cellular systems that regulate their biological activities in daily cycles. For the cyanobacterium Synechococcus elongatus, it has been shown by in vitro and in vivo experiments that the basic circadian timing process is based on rhythmic phosphorylation of KaiC hexamers. Despite the excellent experimental work, a full systems level understanding of the in vitro clock is still lacking. In this work, we provide a mathematical approach to scan different hypothetical mechanisms for the primary circadian oscillator, starting from experimentally established molecular properties of the clock proteins. Although optimised for highest performance, only one of the in silico-generated reaction networks was able to reproduce the experimentally found high amplitude and robustness against perturbations. In this reaction network, a negative feedback synchronises the phosphorylation level of the individual hexamers and has indeed been realised in S. elongatus by KaiA sequestration as confirmed by experiments.  (+info)

An allosteric model of circadian KaiC phosphorylation. (48/177)

In a recent series of ground-breaking experiments, Nakajima et al. [Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Science 308:414-415] showed that the three cyanobacterial clock proteins KaiA, KaiB, and KaiC are sufficient in vitro to generate circadian phosphorylation of KaiC. Here, we present a mathematical model of the Kai system. At its heart is the assumption that KaiC can exist in two conformational states, one favoring phosphorylation and the other dephosphorylation. Each individual KaiC hexamer then has a propensity to be phosphorylated in a cyclic manner. To generate macroscopic oscillations, however, the phosphorylation cycles of the different hexamers must be synchronized. We propose a novel synchronization mechanism based on differential affinity: KaiA stimulates KaiC phosphorylation, but the limited supply of KaiA dimers binds preferentially to those KaiC hexamers that are falling behind in the oscillation. KaiB sequesters KaiA and stabilizes the dephosphorylating KaiC state. We show that our model can reproduce a wide range of published data, including the observed insensitivity of the oscillation period to variations in temperature, and that it makes nontrivial predictions about the effects of varying the concentrations of the Kai proteins.  (+info)