Circadian clocks: translation. (33/177)

One of the big questions in biological rhythms research is how a stable and precise circa-24 hour oscillation is generated on the molecular level. While increasing complexity seemed to be the key, a recent report suggests that circa-24 hour rhythms can be generated by just four molecules incubated in a test tube.  (+info)

Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes. (34/177)

The kaiA, kaiB and kaiC genes encode the core components of the cyanobacterial circadian clock in Synechococcus elongatus PCC 7942. Rhythmic expression patterns of kaiA and of the kaiBC operon normally peak in synchrony. In some mutants the relative timing of peaks (phase relationship) between these transcription units is altered, but circadian rhythms persist robustly. In this study, the importance of the transcriptional timing of kai genes was examined. Expressing either kaiA or kaiBC from a heterologous promoter whose peak expression occurs 12 h out of phase from the norm, and thus 12 h out of phase from the other kai locus, did not affect the time required for one cycle (period) or phase of the circadian rhythm, as measured by bioluminescence reporters. Furthermore, the data confirm that specific cis elements within the promoters of the kai genes are not necessary to sustain clock function.  (+info)

Functionally important substructures of circadian clock protein KaiB in a unique tetramer complex. (35/177)

KaiB is a component of the circadian clock molecular machinery in cyanobacteria, which are the simplest organisms that exhibit circadian rhythms. Here we report the x-ray crystal structure of KaiB from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. The KaiB crystal diffracts at a resolution of 2.6 A and includes four subunits organized as a dimer of dimers, each composed of two non-equivalent subunits. The overall shape of the tetramer is an elongated hexagonal plate, with a single positively charged cleft flanked by two negatively charged ridges whose surfaces includes several terminal chains. Site-directed mutagenesis of Synechococcus KaiB confirmed that alanine substitution of residues Lys-11 or Lys-43 in the cleft, or deletion of C-terminal residues 95-108, which forms part of the ridges, strongly weakens in vivo circadian rhythms. Characteristics of KaiB deduced from the x-ray crystal structure were also confirmed by physicochemical measurements of KaiB in solution. These data suggest that the positively charged cleft and flanking negatively charged ridges in KaiB are essential for the biological function of KaiB in the circadian molecular machinery in cyanobacteria.  (+info)

Hourglass model for a protein-based circadian oscillator. (36/177)

Many organisms possess internal biochemical clocks, known as circadian oscillators, which allow them to regulate their biological activity with a 24-hour period. It was recently discovered that the circadian oscillator of photosynthetic cyanobacteria is able to function in a test tube with only three proteins, KaiA, KaiB, and KaiC, and ATP. Biochemical events are intrinsically stochastic, and this tends to desynchronize oscillating protein populations. We propose that stability of the Kai-protein oscillator relies on active synchronization by (i) monomer exchange between KaiC hexamers during the day, and (ii) formation of clusters of KaiC hexamers at night. Our results highlight the importance of collective assembly or disassembly of proteins in biochemical networks, and may help guide design of novel protein-based oscillators.  (+info)

Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. (37/177)

The cyanobacterial circadian clock can be reconstituted in vitro by mixing recombinant KaiA, KaiB and KaiC proteins with ATP, producing KaiC phosphorylation and dephosphorylation cycles that have a regular rhythm with a ca. 24-h period and are temperature-compensated. KaiA and KaiB are modulators of KaiC phosphorylation, whereby KaiB antagonizes KaiA's action. Here, we present a complete crystallographic model of the Synechococcus elongatus KaiC hexamer that includes previously unresolved portions of the C-terminal regions, and a negative-stain electron microscopy study of S. elongatus and Thermosynechococcus elongatus BP-1 KaiA-KaiC complexes. Site-directed mutagenesis in combination with EM reveals that KaiA binds exclusively to the CII half of the KaiC hexamer. The EM-based model of the KaiA-KaiC complex reveals protein-protein interactions at two sites: the known interaction of the flexible C-terminal KaiC peptide with KaiA, and a second postulated interaction between the apical region of KaiA and the ATP binding cleft on KaiC. This model brings KaiA mutation sites that alter clock period or abolish rhythmicity into contact with KaiC and suggests how KaiA might regulate KaiC phosphorylation.  (+info)

Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. (38/177)

In the cyanobacterium Synechococcus elongatus (PCC 7942) the kai genes A, B, and C and the sasA gene encode the functional protein core of the timing mechanism essential for circadian clock regulation of global gene expression. The Kai proteins comprise the central timing mechanism, and the sensor kinase SasA is a primary transducer of temporal information. We demonstrate that the circadian clock also regulates a chromosome compaction rhythm. This chromosome compaction rhythm is both circadian clock-controlled and kai-dependent. Although sasA is required for global gene expression rhythmicity, it is not required for these chromosome compaction rhythms. We also demonstrate direct control by the Kai proteins on the rate at which the SasA protein autophosphorylates. Thus, to generate and maintain circadian rhythms in gene expression, the Kai proteins keep relative time, communicate temporal information to SasA, and may control access to promoter elements by imparting rhythmic chromosome compaction.  (+info)

Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. (39/177)

Recent findings about the core of the circadian oscillator in cyanobacteria are challenging the dogma that such clocks are driven through transcriptional-translational feedback regulation. Instead, the master pacemaker is independent of both transcription and translation, and consists of self-sustained oscillations in the phosphorylation status of the KaiC protein in vivo. Using a minimal cocktail of three recombinant proteins with adenosine triphosphate, the core clock was even reproduced in vitro. The so-born chemical oscillator could reproduce accurately temperature compensation and altered period phenotypes in mutants. This system now provides an ideal playground for rebuilding the circadian clock by adding successive components while understanding every single step with chemical resolution.  (+info)

A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression. (40/177)

An intriguing property of the cyanobacterial circadian clock is that endogenous rhythm persists when protein abundances are kept constant either in the presence of translation and transcription inhibitors or in the constant dark condition. Here we propose a regulatory mechanism of KaiC phosphorylation for the generation of circadian oscillations in cyanobacteria. In the model, clock proteins KaiA and KaiB are assumed to have multiple states, regulating the KaiC phosphorylation process. The model can explain 1), the sustained oscillation of gene expression and protein abundance when the expression of the kaiBC gene is regulated by KaiC protein, and 2), the sustained oscillation of phosphorylated KaiC when transcription and translation processes are inhibited and total protein abundance is fixed. Results of this work suggest that KaiA and KaiB strengthen the nonlinearity of KaiC phosphorylation, thereby promoting the circadian rhythm in cyanobacteria.  (+info)