Control of variant surface glycoprotein gene-expression sites in Trypanosoma brucei. (9/746)

Trypanosoma brucei has 20 similar telomeric-expression sites for variant surface glycoprotein genes. Expression sites appear to be controlled at the level of transcription initiation, resulting in only one site being active at any time. Switching between expression sites occurs at a low rate. To analyse the switching mechanism, we used trypanosomes with two expression sites tagged with two different drug-resistance genes and selected these on agarose plates containing both drugs. Double-resistant clones arose at a low frequency of 10(-7) per cell, but these behaved as if they rapidly switched between the two tagged expression sites and lost double resistance in the absence of selection. Using in situ hybridization we found that only 10% of the double-resistant cells had two fluorescent spots corresponding to transcribed expression sites. Our results suggest that: (i) a double expressor is not a stable intermediate in expression site switching; (ii) expression sites are not independently switched on and off; and (iii) expression sites can be in a 'pre-active' silent state from which they can be readily activated.  (+info)

Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. (10/746)

Striking similarities between cytoskeletal assembly and the "nucleated polymerization" model of prion propagation suggest that similar or overlapping sets of proteins may assist in both processes. We show that the C-terminal domain of the yeast cytoskeletal assembly protein Sla1 (Sla1C) specifically interacts with the N-terminal prion-forming domain (Sup35N) of the yeast release factor Sup35 (eRF3) in the two-hybrid system. Sla1C and several other Sup35N-interacting proteins also exhibit two-hybrid interactions with the poly-Gln-expanded N-proximal fragment of human huntingtin, which promotes Huntington disease-associated aggregation. The Sup35N-Sla1C interaction is inhibited by Sup35N alterations that make Sup35 unable to propagate the [PSI(+)] state and by the absence of the chaperone protein Hsp104, which is essential for [PSI] propagation. In a Sla1(-) background, [PSI] curing by dimethylsulfoxide or excess Hsp104 is increased, while translational readthrough and de novo [PSI] formation induced by excess Sup35 or Sup35N are decreased. These data show that, in agreement with the proposed function of Sla1 during cytoskeletal formation, Sla1 assists in [PSI] formation and propagation, but is not required for these processes. Sla1(-) strains are sensitive to some translational inhibitors, and some sup35 mutants, obtained in a Sla1(-) background, are sensitive to Sla1, suggesting that the interaction between Sla1 and Sup35 proteins may play a role in the normal function of the translational apparatus. We hypothesize that Sup35N is involved in regulatory interactions with intracellular structural networks, and [PSI] prion may be formed as a by-product of this process.  (+info)

Hybrid polar histone deacetylase inhibitor induces apoptosis and CD95/CD95 ligand expression in human neuroblastoma. (11/746)

Inhibitors of histone deacetylase (HDAC) have been shown to have both apoptotic and differentiating effects on various tumor cells. M-carboxycinnamic acid bishydroxamide (CBHA) is a recently developed hybrid polar compound structurally related to hexamethylene bisacetamide. CBHA is a potent inhibitor of HDAC activity. CBHA induces cellular growth arrest and differentiation in model tumor systems. We undertook an investigation of the effects of CBHA on human neuroblastoma cell lines in vitro. When added to cultures of a panel of neuroblastoma cell lines, CBHA induced the accumulation of acetylated histones H3 and H4, consistent with the inhibition of HDAC. Concentrations of CBHA between 0.5 microM and 4 microM led to apoptosis in nine of nine neuroblastoma cell lines. Apoptosis was assessed by DNA fragmentation analysis and the appearance of a sub-G1 (<2N ploidy) population by flow cytometric analysis. The addition of a caspase inhibitor (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone) completely abrogated CBHA-induced apoptosis in three of three cell lines. The addition of cycloheximide greatly reduced CBHA-induced apoptosis, suggesting that apoptotic induction was dependent on de novo protein synthesis. In addition, CBHA induced the expression of both CD95 (APO-1/Fas) and CD95 ligand within 12 h. The effect of CBHA on human neuroblastoma cells suggests that this agent and structurally related synthetic hybrid polar compounds have therapeutic potential for the treatment of this malignancy.  (+info)

The sigma ligand, igmesine, inhibits cholera toxin and Escherichia coli enterotoxin induced jejunal secretion in the rat. (12/746)

BACKGROUND: Cholera toxin, and Escherichia coli heat labile (LT) and heat stable (STa) enterotoxins induce small intestinal secretion in part by activating enteric nerves. Igmesine is a novel sigma receptor ligand that inhibits neurally mediated secretion. AIMS: To assess the antisecretory potential of igmesine in cholera toxin, LT, and STa induced water and electrolyte secretion using an in vivo rat model of jejunal perfusion. METHODS: After pretreatment with igmesine, 0.03-10 mg/kg intravenously, jejunal segments of anaesthetised, adult male Wistar rats were incubated with cholera toxin (25 microg), LT (25 microg), or saline. Jejunal perfusion with a plasma electrolyte solution containing a non-absorbable marker was undertaken. In some cases 200 microg/l STa was added to the perfusate. After equilibration, net water and electrolyte movement was determined. In additional experiments rats received igmesine, intravenously or intrajejunally, after exposure to cholera toxin. RESULTS: Cholera toxin induced net water secretion was inhibited by 1 mg/kg igmesine (median -120 versus -31 microl/min/g, p<0.001). LT and STa induced secretion were also inhibited by 1 mg/kg igmesine (-90 versus -56, p<0.03; and -76 versus -29, p<0.01, respectively). Igmesine reduced established cholera toxin induced secretion. CONCLUSION: The sigma ligand, igmesine, inhibits neurally mediated enterotoxigenic secretion. Its ability to inhibit established secretion makes it an agent with therapeutic potential.  (+info)

The role of tyrosine kinases in capacitative calcium influx-mediated aldosterone production in bovine adrenal zona glomerulosa cells. (13/746)

In adrenal glomerulosa cells, the stimulation of aldosterone biosynthesis by angiotensin II (Ang II) involves the activation of a capacitative Ca(2+) influx through calcium release-activated calcium (CRAC) channels. In various mammalian cell systems, it has been shown that CRAC channel activation and Ca(2+) entry require tyrosine kinase activity. We have therefore examined in this work whether similar mechanisms contribute to Ang II-induced mineralocorticoid biosynthesis. In fluo-3-loaded isolated bovine glomerulosa cells, two inhibitors of tyrosine kinases, genistein and methyl-2, 5-dihydroxycinnamate (MDHC) (100 microM) prevented capacitative Ca(2+) entry elicited by Ang II (by 54 and 62% respectively), while the inhibitor of epidermal growth factor (EGF) receptor tyrosine kinase, lavendustin A, was without effect. Similar results were observed on Ca(2+) influx triggered by thapsigargin, an inhibitor of microsomal Ca(2+) pumps. The inhibitors blocked Ang II-stimulated pregnenolone and aldosterone production in the same rank order. In addition to its specific effect on capacitative Ca(2+) influx, genistein also affected the late steps of the steroidogenic pathway, as shown by experiments in which the rate-limiting step (intramitochondrial cholesterol transfer) was bypassed with 25-OH-cholesterol (25-OH-Chol), cytosolic calcium was clamped at stimulated levels or precursors of the late enzymatic steps were supplied. In contrast, genistin, a structural analogue of genistein devoid of tyrosine kinase inhibitory activity, was almost without effect on pregnenolone or 11-deoxycorticosterone (DOC) conversion to aldosterone. These results suggest that, in bovine adrenal glomerulosa cells, Ang II promotes capacitative Ca(2+) influx and aldosterone biosynthesis through tyrosine kinase activation.  (+info)

Apoptotic conversion: evidence for exchange of genetic information between prostate cancer cells mediated by apoptosis. (14/746)

Changes in the outer membrane of apoptotic cells can induce neighboring cells to become phagocytic. Using genetically marked prostate cancer cell lines, we explored the possibility that genetic information might be transferred from an apoptotic cell to a phagocytic neighbor. Neomycin-resistant LNCaP cells that overexpress bcl-2 (LNCaP(bcl-2/neo-r)) were cocultured with hygromycin-resistant LNCaP cells (LNCaP(hygr-r)). The cocultures were then transiently exposed to serum starvation to induce apoptosis of LNCaP(hygr-r) cells. Surviving cells were then coselected in medium containing both antibiotics. Whereas monocultures of LNCaP(bcl-2/neo-r) or LNCaP(hygr-r) treated this way yielded no colonies, cocultures yielded dual-antibiotic-resistant clones at a frequency of approximately 1 in 10(5). Pre-exposure to an apoptotic agent was required; cocultures not exposed to serum starvation yielded no dual-selectable colonies. Analysis of DNA extracted from a dual-resistant clone demonstrated that the restriction endonuclease pattern of the neo-r gene was unaltered when compared with the parental LNCaP(bcl-2/neo-r). However the hygr-r gene demonstrated an altered restriction endonuclease pattern in the dual-resistant derivative compared with the parental LNCaP(hygr-r) cell line. This is evidence that genetic information can be transferred from one prostate cancer cell to another through the process of apoptosis, and we term this form of genetic transfer "apoptotic conversion."  (+info)

A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids. (15/746)

A cinnamoyl esterase, ferulic acid esterase A, from Aspergillus niger releases ferulic acid and 5-5- and 8-O-4-dehydrodiferulic acids from plant cell walls. The breakage of one or both ester bonds from dehydrodimer cross-links between plant cell wall polymers is essential for optimal action of carbohydrases on these substrates, but it is not known if cinnamoyl esterases can break these cross-links by cleaving one of the ester linkages which would not release the free dimer. It is difficult to determine the mechanism of the reaction on complex substrates, and so we have examined the catalytic properties of ferulic acid esterase A from Aspergillus niger using a range of synthetic ethyl esterified dehydrodimers (5-5-, 8-5-benzofuran and 8-O-4-) and two 5-5-diferulate oligosaccharides. Our results show that the esterase is able to cleave the three major dehydrodiferulate cross-links present in plant cell walls. The enzyme is highly specific at hydrolysing the 5-5- and the 8-5-benzofuran diferulates but the 8-O-4-is a poorer substrate. The hydrolysis of dehydrodiferulates to free acids occurs in two discrete steps, one involving dissociation of a monoesterified intermediate which is negatively charged at the pH of the reaction. Although ferulic acid esterase A was able to release monoesters as products of reactions with all three forms of diesters, only the 5-5- and the 8-O-4-monoesters were substrates for the enzyme, forming the corresponding free diferulic acids. The esterase cannot hydrolyse the second ester bond from the 8-5-benzofuran monoester and therefore, ferulic acid esterase A does not form 8-5-benzofuran diferulic acid. Therefore, ferulic acid esterase A from Aspergillus niger contributes to total plant cell wall degradation by cleaving at least one ester bond from the diferulate cross-links that exist between wall polymers but does not always release the free acid product.  (+info)

Stereochemistry of decarboxylation of trans-4-hydroxycinnamic acid by Aerobacter. (16/746)

The stereochemistry of the decarboxylation of trans-p-coumaric acid to 4-hydroxystyrene by Aerobacter aerogenes has been examined. The decarboxylation has been found to proceed with retention of the geometry about the trans-substituted double-bond.  (+info)