Phosphatidylinositol cleavage catalysed by the soluble fraction from lymphocytes. Activity at pH5.5 and pH7.0. (9/15)

Phosphatidylinositol breakdown by subcellular preparations of small lymphocytes from pig mesenteric lymph nodes was investigated. Activity was higher than in preparations from the tissues studied previously; it was recovered largely in the soluble fraction, which showed pH optima at both 5.4-5.6 and 7.0-7.3. As in other tissues, phosphatidylinositol cleavage produced 1,2-diacylglycerol and a mixture of myo-inositol 1:2-cyclic phosphate and myo-inositol 1-phosphate. It was stimulated by addition of CaCl(2) and, less effectively, by MgCl(2). On sucrose-density-gradient ultracentrifugation at pH7.0 two peaks of activity were observed (approx. sedimentation coefficients 8S and 10S); the activity profiles on the gradients were similar when assayed at pH7.0 and 5.5. Activity at pH7.0 (and 0.4mm-CaCl(2)) was decreased by agents, such as salts and lipophilic cations, which tend to neutralize the negative charge of phosphatidylinositol; at pH5.5 these agents slightly stimulated activity. It is suggested that the same enzyme(s) may be responsible for activity at both pH optima and that previous workers may have underestimated the pH7.0 activity because of the inhibitory influence of cations under the usual assay conditions.  (+info)

Altered diaphorase activity in optochin-resistant pneumococci. (10/15)

Methylene blue (MB) reductase activities of washed cell suspensions and of cell-free extracts prepared from optochin-resistant mutant pneumococci were two times greater than and four to eight times more resistant to optochin inhibition than those of similar preparations from the optochin-sensitive parent strains. With whole cells, optochin hydrochloride was approximately four times more potent than quinine hydrochloride in inhibiting MB reductase activity. However, with cell-free extracts, both drugs had similar inhibitory activities. Glucose uptake was not affected by optochin hydrochloride, and both optochin-sensitive and optochin-resistant pneumococci had similar glucose uptake patterns. Diaphorase activities of cell-free extracts prepared from optochin-resistant pneumococci were two times greater than and four to eight times more resistant to optochin inhibition than those of cell-free extracts prepared from the optochin-sensitive parent strains. Flavin concentrations of cell-free extracts prepared from optochin-sensitive and optochin-resistant strains were similar.  (+info)

Purification and properties of mutant and wild-type diaphorases from Diplococcus pneumoniae. (11/15)

Optochin-resistant mutant and wild-type diaphorases were purified approximately 300-fold by a combination of batch adsorption and column chromatography with diethylaminoethyl cellulose, and were characterized with regard to their pH optima, sensitivity to optochin inhibition and heat inactivation, Michaelis constants with flavine mononucleotide (FMN) and reduced nicotinamide adenine dinucleotide (NADH), and inhibition constants with optochin hydrochloride. The pH optima of the purified diaphorases were similar, but the purified diaphorases from the optochin-resistant strains were approximately four to five times more resistant to heat inactivation at 45 C than was the wild-type diaphorase. Purified diaphorase preparations from the optochin-resistant pneumococci had greater activities per milligram of protein and were more resistant to optochin inhibition than the preparation from the optochin-sensitive pneumococcus. Michaelis constants for FMN and NADH were similar; however, the inhibition constants of the optochin-resistant diaphorases were four to eight times greater than that of the optochin-sensitive diaphorase. Optochin hydrochloride produced a noncompetitive type of inhibition with FMN as substrate but a competitive type of inhibition with NADH as substrate. Optochin hydrochloride produced an approximately 10-fold increase in the Michaelis constant for NADH. The concentration of drug required to produce this effect was, however, greater with the mutant diaphorases than with the wild-type diaphorase. Optochin hydrochloride quenched the fluorescence of riboflavine. This phenomenon did not appear to be related to the diaphorase-inhibitory activity of the drug, however, since the pH requirements of the two reactions were different. Quenching of riboflavine fluorescence by optochin hydrochloride increased with a rise in pH, whereas inhibition of diaphorase activity by optochin hydrochloride was greater at pH 6.8 than at pH 7.6.  (+info)

Interfering effect of incubation in carbon dioxide on the identification of pneumococci by optochin discs. (12/15)

Incubation of pneumococci in a CO(2) environment decreases the zone sizes produced by optochin discs, with the result that pneumococcal-like organisms require further study.  (+info)

Alteration in bacterial morphology by optochin and quinine hydrochlorides. (13/15)

Incubation of washed bacterial and ribosomal suspensions with optochin or quinine hydrochloride caused an increase in the turbidity of the suspensions and the appearance of electron-dense cytoplasmic aggregates in the treated cells. These effects were more pronounced with optochin hydrochloride than with quinine hydrochloride, and they did not correlate with the relative sensitivities of different bacteria to growth inhibition by optochin or quinine.  (+info)

The oxidation of D-quinate and related acids by Acetomonas oxydans. (14/15)

1. Growing cells of a small number of strains of Acetomonas oxydans oxidized d-quinate to 5-dehydroquinate. 2. d-Shikimate was oxidized to 4,5-dihydroxy-3-oxocyclohex-1-ene-1-carboxylate (3-dehydroshikimate, formerly 5-dehydroshikimate). 3. d-Dihydroshikimate was oxidized to the corresponding 5-dehydro compound, but epidihydroshikimate oxidation by growing cells was not observed. 4. Cell-free extracts oxidized d-quinate to 5-dehydroquinate with the consumption of the stoicheiometric amount of oxygen, but oxidation of shikimate and dihydroshikimate did not go to completion. 5. Oxidation of quinate was brought about by a constitutive particulate enzyme probably localized in the cytoplasmic membrane. No evidence was found for the participation of NAD, NADP or free flavine compounds in electron transport, but the system was cytochrome-linked.  (+info)

Purification and characterization of two isoforms of isopentenyl-diphosphate isomerase from elicitor-treated Cinchona robusta cells. (15/15)

In Cinchona robusta (Rubiaceae) cell suspension cultures, the activity of the enzyme isopentenyl-diphosphate isomerase (isopentenyl-POP isomerase) is transiently induced after addition of a homogenate of the phytopathogenic fungus Phytophthora cinnamomi. The enzyme catalyses the interconversion of isopentenyl-POP and dimethylallyl diphosphate (dimethylallyl-POP) and may be involved in the biosynthesis of anthraquinone phytoalexins that accumulate rapidly after elicitation of Cinchona cells. From elicitor-treated C. robusta cells, two isoforms of isopentenyl-POP isomerase have been purified to apparent homogeneity in four chromatographic steps. The purified forms are monomeric enzymes of 34 kDa (isoform I) and 29 kDa (isoform II), with Km values for isopentenyl-POP of 5.1 microM and 1.0 microM, respectively. Both isoforms require Mn2+ or Mg2+ as cofactor, isoform II showing a preference for Mn2+ with maximum activity at 1.5-2 mM. Isoform I was most active in the presence of 0.5-1.5 mM Mg2+ or in the presence of 0.5 mM Mn2+. A pH optimum of 7-7.8 was found for both forms and both were competitively inhibited by geranyl diphosphate (Ki 96 microM for isoform I) and the transition state analogue 2-(dimethylamino)ethyl diphosphate. Rechromatography of purified isoforms did not indicate any interconversion of both forms. Western blot analysis, using antibodies raised against isopentenyl-POP isomerase purified from Capsicum annuum, showed the presence of both isoforms in the crude protein extracts from C. robusta cells. Isoform II was specifically induced by elicitation, non-treated cells contained low activity of this isoform. The possible role of isopentenyl-POP isomerase in the biosynthesis of anthraquinones is discussed.  (+info)