Lebetase, an alpha(beta)-fibrin(ogen)olytic metalloproteinase of Vipera lebetina snake venom, is inhibited by human alpha-macroglobulins. (57/2760)

The effects of the plasma proteinase inhibitors alpha(2)-macroglobulin (alpha(2)M) and the alpha(2)M-related pregnancy zone protein (PZP) were evaluated towards the metalloproteinase lebetase, isolated from Vipera lebetina venom. We demonstrate that lebetase interacts with both inhibitors. Cleavage of alpha(2)M by lebetase resulted in the formation of 90-kDa fragments, and covalent complexes of alpha(2)M with lebetase were observed. The proteolytic activity of lebetase against fibrinogen and azocasein could be inhibited by alpha(2)M. Cleavage of PZP also resulted in the formation of 90-kDa fragments, and complexes of both dimer and tetramer forms of PZP with lebetase were detected. The amino acid sequence identification of the sites of specific proteolysis of alpha(2)M and PZP demonstrate that the cleavage sites are within the bait regions of both proteins. Lebetase I cleaves between Arg(696)-Leu(697), which is one of the most common cleavage sites in alpha(2)M by proteinases. The other two cleavage sites in alpha(2)M by lebetase are Gly(679)-Leu(680) and His(694)-Ala(695). The cleavage between Pro(689)-Gln(690) is the only cleavage site identified in PZP. In that lebetase is an anticoagulation agent in vivo, we propose that the interaction of lebetase with alpha(2)M may suggest a reduced fibrin(ogen)olytic activity of lebetase in human.  (+info)

Proteinase inhibitors from desert locust, Schistocerca gregaria: engineering of both P(1) and P(1)' residues converts a potent chymotrypsin inhibitor to a potent trypsin inhibitor. (58/2760)

Two peptides, SGCI and SGTI, that inhibited chymotrypsin and trypsin, respectively, were isolated from the haemolymph of Schistocerca gregaria. Their primary structures were found to be identical with SGP-2 and SGP-1, two of a series of peptides isolated from ovaries of the same species (A. Hamdaoui et al., FEBS Lett. 422 (1998) 74-78). All these peptides are composed of 35-36 amino acid residues and contain three homologous disulfide bridges. The residues imparting specificity to SGCI and SGTI were identified as Leu-30 and Arg-29, respectively. The peptides were synthesised by solid-phase peptide synthesis, and the synthetic ones displayed the same inhibition as the natural forms: SGCI is a strong inhibitor of chymotrypsin (K(i) = 6.2 x 10(-12) M), and SGTI is a rather weak inhibitor of trypsin (K(i) = 2.1 x 10(-7) M). The replacement of P(1) then P(1)' residues of SGCI with trypsin-specific residues increased affinity towards trypsin 3600- and 1100-fold, respectively, thus SGCI was converted to a strong trypsin inhibitor (K(i) = 5.0 x 10(-12) M) that retained some inhibitory affinity towards chymotrypsin (K(i) = 3.5 x 10(-8) M). The documented role of both P(1) and P(1)' highlights the importance of S(1)'P(1)' interactions in enzyme-inhibitor complexes.  (+info)

The cardiomyopathy and lens cataract mutation in alphaB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. (59/2760)

Desmin-related myopathy and cataract are both caused by the R120G mutation in alphaB-crystallin. Desmin-related myopathy is one of several diseases characterized by the coaggregation of intermediate filaments with alphaB-crystallin, and it identifies intermediate filaments as important physiological substrates for alphaB-crystallin. Using recombinant human alphaB-crystallin, the effects of the disease-causing mutation R120G upon the structure and the chaperone activities of alphaB-crystallin are reported. The secondary, tertiary, and quaternary structural features of alphaB-crystallin are all altered by the mutation as deduced by near- and far-UV circular dichroism spectroscopy, size exclusion chromatography, and chymotryptic digestion assays. The R120G alphaB-crystallin is also less stable than wild type alphaB-crystallin to heat-induced denaturation. These structural changes coincide with a significant reduction in the in vitro chaperone activity of the mutant alphaB-crystallin protein, as assessed by temperature-induced protein aggregation assays. The mutation also significantly altered the interaction of alphaB-crystallin with intermediate filaments. It abolished the ability of alphaB-crystallin to prevent those filament-filament interactions required to induce gel formation while increasing alphaB-crystallin binding to assembled intermediate filaments. These activities are closely correlated to the observed disease pathologies characterized by filament aggregation accompanied by alphaB-crystallin binding. These studies provide important insight into the mechanism of alphaB-crystallin-induced aggregation of intermediate filaments that causes disease.  (+info)

Primary structure and unusual carbohydrate moiety of functional unit 2-c of keyhole limpet hemocyanin (KLH). (60/2760)

The complete amino acid sequence of the Megathura crenulata hemocyanin functional unit KLH2-c was determined by direct sequencing and matrix-assisted laser desorption ionization mass spectrometry of the protein, and of peptides obtained by cleavage with EndoLysC proteinase, chymotrypsin and cyanogen bromide. This is the first complete primary structure of a functional unit c from a gastropod hemocyanin. KLH2-c consists of 420 amino acid residues. Circular dichroism spectra indicated approx. 31% beta-sheet and 29% alpha-helix contents. A multiple sequence alignment with other molluscan hemocyanin functional units revealed average identities between 41 and 49%, but 55% in case of Octopus hemocyanin functional unit c which is the structural equivalent to KLH2-c. KLH2-c has a molecular mass of approx. 48 kDa as calculated from its sequence and a measured mass of approx. 56 kDa; the mass difference is attributed to the sugar side chains usually decorating molluscan hemocyanin. However, inspection of the sequence of KLH2-c revealed no potential N-linked carbohydrate attachment sites, and this was supported by its inability to bind concanavalin A. Also KLH1-c was unreactive, whereas most, if not all, other functional units of KLH1 and KLH2 reacted positively to this lectin. On the other hand, peanut agglutinin specifically binds KLH2-c, indicating the presence of O-glycosidically linked carbohydrates in this functional unit. This contrasts to all other KLH functional units (including KLH1-c), which lack O-linked glycosides. The present results are discussed in view of the recent X-ray structure of the functional unit g from Octopus hemocyanin, and a published record of the Thomsen Friedenreich tumor antigenic epitope in KLH.  (+info)

Myosin thick filaments from adult rabbit skeletal muscles. (61/2760)

Myosin subfragment 1 (S1) forms dimers in the presence of Mg(2+) or MgADP or MgATP. The entire myosin molecule forms head-head dimers in the presence of MgATP. The angle between the two subunits in the S1 dimer is 95 degrees. Assuming that the length of the globular part of S1 is approximately 12 nm and that the S1/S2 joint (lever arm approximately 7 nm) is clearly bent, the cylinder tangent to this dimer should have a diameter of approximately 18 nm, close to the approximately 16-20 nm suggested by many studies for the diameter of thick filaments in situ. These conclusions led us to re-examine our previous model, according to which two heads from two opposite myosin molecules are inserted into the filament core and interact as dimers. We studied synthetic filaments by electron microscopy, enzyme activity assays, controlled digestion and filament-filament interaction analysis. Synthetic filaments formed by rapid dilution in the presence of 1 mM EDTA at room temperature ( approximately 22 degrees C) had all their myosin heads outside the backbone. These filaments are called superfilaments (SF). Synthetic filaments formed by slow dilution, in the presence of either 2 mM Mg(2+) or 0.5 mM MgATP and at low temperature ( approximately 0 degrees C) had one myosin head outside the backbone and one head inside. These filaments are called filaments (F). Synthetic filaments formed by slow dilution, in the presence of 4 mM MgATP at low temperature ( approximately 0 degrees C) had most of their heads inserted in the filament core. These filaments are called antifilaments (AF). These experimental results provide important new information about myosin synthetic filaments. In particular, we found that myosin heads were involved in filament assembly and that filament-filament interactions can occur via the external heads. Native filaments (NF) from rabbit psoas muscle were also studied by enzyme assays. Their structure depended on the age of the rabbit. NF from 4-month-old rabbits were three-stranded, i.e. six myosin heads per crown, two of which were inside the core and four outside. NF from 18-month-old rabbits were two-stranded (similar to F).  (+info)

Catalytic properties and conformation of hydrophobized alpha-chymotrypsin incorporated into a bilayer lipid membrane. (62/2760)

A set of artificially hydrophobized alpha-chymotrypsin derivatives, carrying 2-11 stearoyl residues per enzyme molecule, were synthesized and their catalytic parameters and conformation in water solution and in the liposome-bound state were investigated. Hydrophobization of alpha-chymotrypsin and its further incorporation into phosphatidylcholine (PC) liposomes have no effect on the rate constant of the N-acetyl-L-tyrosine ethyl ester (ATEE) ester bond hydrolysis (k(cat)). At the same time, an increase in the number of stearoyl residues attached to the enzyme results in a drastic decrease of ATEE binding to the active center (K(M) increase). Incorporation of the hydrophobized enzyme into the PC liposome membrane results in K(M) recovery to nearly that of native alpha-chymotrypsin. The above changes are accompanied by partial unfolding of the enzyme molecules observed by fluorescence measurements. The obtained results are of interest to mimic the contribution of surface hydrophobic sites in the functioning of membrane proteins.  (+info)

Structure, pathology and function of the N-linked sugar chains of human chorionic gonadotropin. (63/2760)

Human chorionic gonadotropin (hCG) contains five acidic N-linked sugar chains, which are derived from three neutral oligosaccharides by sialylation. Each of the two subunits (hCGalpha and hCGbeta) of hCG contain two glycosylated Asn residues. Glycopeptides, each containing a single glycosylated Asn, were obtained by digestion of hCGalpha with trypsin, and of hCGbeta with chymotrypsin and lysyl endopeptidase. Comparative study of the sugar chains of the four glycopeptides revealed the occurrence of site-directed glycosylation. Studies of the sugar chains of hCGs, purified from urine of patients with various trophoblastic diseases, revealed that choriocarcinoma hCGs contain sialylated or non-sialylated forms of eight neutral oligosaccharides. In contrast, hCGs from invasive mole patients contain sialyl derivatives of five neutral oligosaccharides. The structural characteristics of the five neutral oligosaccharides, detected in choriocarcinoma hCGs but not in normal placental hCGs, indicate that N-acetylglucosaminyltransferase IV (GnT-IV) is abnormally expressed in the malignant cells. This supposition was confirmed by molecular biological study of GnT-IV in placenta and choriocarcinoma cell lines. The appearance of tumor-specific sugar chains in hCG has been used to develop a diagnostic method of searching for malignant trophoblastic diseases. In addition, a summary of the current knowledge concerning the functional role of N-linked sugar chains in the expression of the hormonal activity of hCG has been presented.  (+info)

Cleavage of urokinase receptor regulates its interaction with integrins in thyroid cells. (64/2760)

The urokinase-type plasminogen activator uPA-R can regulate integrin functions by associating with several types of beta-subunit. We have recently shown that normal thyroid TAD-2 cells express both a native and a cleaved form of uPA-R which lacks the binding domain for uPA. We found this cleaved form to be present in reduced amounts in papillary and follicular thyroid carcinoma cells and completely absent in cells derived from an anaplastic thyroid carcinoma (ARO). We now report that in normal thyroid cells the intact form of uPA-R strongly associates with beta-1 integrins, whereas its cleaved form does not. uPA-R expressed by ARO cells shows a stronger resistance to the cleavage mediated by uPA, plasmin and chymotrypsin than does uPA-R expressed by normal thyroid cells. This resistance to cleavage correlates with the higher level of glycosylation of uPA-R of ARO cells as compared to that of cleavable uPA-R of normal thyroid cells. These results suggest that uPA-R cleavage, which occurs in several cell types, represents a mechanism regulating the interactions of uPA-R with integrins and, possibly, the subsequent integrin-mediated cell adhesion. Moreover we hypothesize that glycosylation regulates uPA-R cleavage and, indirectly, its interaction with integrins.  (+info)