SPI-1-dependent host range of rabbitpox virus and complex formation with cathepsin G is associated with serpin motifs. (49/2760)

Serpins are a superfamily of serine proteinase inhibitors which function to regulate a number of key biological processes including fibrinolysis, inflammation, and cell migration. Poxviruses are the only viruses known to encode functional serpins. While some poxvirus serpins regulate inflammation (myxoma virus SERP1 and cowpox virus [CPV] crmA/SPI-2) or apoptosis (myxoma virus SERP2 and CPV crmA/SPI-2), the function of other poxvirus serpins remains unknown. The rabbitpox virus (RPV) SPI-1 protein is 47% identical to crmA and shares all of the serpin structural motifs. However, no serpin-like activity has been demonstrated for SPI-1 to date. Earlier we showed that RPV with the SPI-1 gene deleted, unlike wild-type virus, fails to grow on A549 or PK15 cells (A. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:306-314, 1994). Here we demonstrate that in the absence of a functional SPI-1 protein, infected nonpermissive cells which exhibit the morphological features of apoptosis fail to activate terminal caspases or cleave the death substrates PARP or lamin A. We show that SPI-1 forms a stable complex in vitro with cathepsin G, a member of the chymotrypsin family of serine proteinases, consistent with serpin activity. SPI-1 reactive-site loop (RSL) mutations of the critical P1 and P14 residues abolish this activity. Viruses containing the SPI-1 RSL P1 or P14 mutations also fail to grow on A549 or PK15 cells. These results suggest that the full virus host range depends on the serpin activity of SPI-1 and that in restrictive cells SPI-1 inhibits a proteinase with chymotrypsin-like activity and may function to inhibit a caspase-independent pathway of apoptosis.  (+info)

Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. (50/2760)

In eukaryotes, the 20S proteasome contains two chymotrypsin-like, two trypsin-like, and two active sites shown here to have caspase-like specificity. We report that certain sites allosterically regulate each other's activities. Substrates of a chymotrypsin-like site stimulate dramatically the caspase-like activity and also activate the other chymotrypsin-like site. Moreover, substrates of the caspase-like sites inhibit allosterically the chymotrypsin-like activity (the rate-limiting one in protein breakdown) and thus can reduce the degradation of proteins by 26S proteasomes. These allosteric effects suggest an ordered, cyclical mechanism for protein degradation. We propose that the chymotrypsin-like site initially cleaves ("bites") the polypeptide, thereby stimulating the caspase-like sites. Their activation accelerates further cleavage ("chewing") of the fragments, while the chymotrypsin-like activity is temporarily inhibited. When further caspase-like cleavages are impossible, the chymotryptic site is reactivated and the cycle repeated.  (+info)

The human cytotoxic T cell granule serine protease granzyme H has chymotrypsin-like (chymase) activity and is taken up into cytoplasmic vesicles reminiscent of granzyme B-containing endosomes. (51/2760)

Serine proteases (granzymes) contained within the cytoplasmic granules of cytotoxic T cells and natural killer cells play a variety of roles including the induction of target cell apoptosis, breakdown of extracellular matrix proteins and induction of cytokine secretion by bystander leukocytes. Different granzymes display proteolytic specificities that mimic the activities of trypsin or chymotrypsin, or may cleave substrates at acidic ("Asp-ase") or at long unbranched amino acids such as Met ("Met-ase"). Here, we report that recombinant granzyme H has chymotrypsin-like (chymase) activity, the first report of a human granzyme with this proteolytic specificity. Recombinant 32-kDa granzyme H expressed in the baculovirus vector pBacPAK8 was secreted from Sf21 cells and recovered by Ni-affinity chromatography, using a poly-His tag encoded at the predicted carboxyl terminus of full-length granzyme H cDNA. The granzyme H efficiently cleaved Suc-Phe-Leu-Phe-SBzl (v = 185 nM/s at [S] = 0.217 mM) and also hydrolyzed Boc-Ala-Ala-X-SBzl (X = Phe, Tyr, Met, Nle, or Nva) with slower rates but had little tryptase or Asp-ase activity. Enzymatic activity was inhibited completely by 0.1 mM 3,4-dichloroisocoumarin and 84% by 1.0 mM phenylmethylsulfonyl fluoride. Fluoresceinated granzyme H was internalized in a temperature-dependent manner by Jurkat cells into endosome-like vesicles, suggesting that it can bind to cell surface receptors similar to those that bind granzyme B. This suggests a hitherto unsuspected intracellular function for granzyme H.  (+info)

The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. (52/2760)

The crystal structure of the 2A proteinase from human rhinovirus serotype 2 (HRV2-2A(pro)) has been solved to 1.95 A resolution. The structure has an unusual, although chymotrypsin-related, fold comprising a unique four-stranded beta sheet as the N-terminal domain and a six-stranded beta barrel as the C-terminal domain. A tightly bound zinc ion, essential for the stability of HRV2-2A(pro), is tetrahedrally coordinated by three cysteine sulfurs and one histidine nitrogen. The active site consists of a catalytic triad formed by His18, Asp35 and Cys106. Asp35 is additionally involved in an extensive hydrogen-bonding network. Modelling studies reveal a substrate-induced fit that explains the specificity of the subsites S4, S2, S1 and S1'. The structure of HRV2-2A(pro) suggests the mechanism of the cis cleavage and its release from the polyprotein.  (+info)

Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide. (53/2760)

The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HFO adhesion molecules. S. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.  (+info)

N5-(L-1-carboxyethyl)-L-ornithine synthase: physical and spectral characterization of the enzyme and its unusual low pKa fluorescent tyrosine residues. (54/2760)

N5-(L-1-carboxyethyl)-L-ornithine synthase [E.C. 1.5.1.24] (CEOS) from Lactococcus lactis has been cloned, expressed, and purified from Escherichia coli in quantities sufficient for characterization by biophysical methods. The NADPH-dependent enzyme is a homotetramer (Mr approximately equal to 140,000) and in the native state is stabilized by noncovalent interactions between the monomers. The far-ultraviolet circular dichroism spectrum shows that the folding pattern of the enzyme is typical of the alpha,beta family of proteins. CEOS contains one tryptophan (Trp) and 19 tyrosines (Tyr) per monomer, and the fluorescence spectrum of the protein shows emission from both Trp and Tyr residues. Relative to N-acetyltyrosinamide, the Tyr quantum yield of the native enzyme is about 0.5. All 19 Tyr residues are titratable and, of these, two exhibit the uncommonly low pKa of approximately 8.5, 11 have pKa approximately 10.75, and the remaining six titrate with pKa approximately 11.3. The two residues with pKa approximately 8.5 contribute approximately 40% of the total tyrosine emission, implying a relative quantum yield >1, probably indicating Tyr-Tyr energy transfer. In the presence of NADPH, Tyr fluorescence is reduced by 40%, and Trp fluorescence is quenched completely. The latter result suggests that the single Trp residue is either at the active site, or in proximity to the sequence GSGNVA, that constitutes the beta alphabeta fold of the nucleotide-binding domain. Chymotrypsin specifically cleaves native CEOS after Phe255. Although inactivated by this single-site cleavage of the subunit, the enzyme retains the capacity to bind NADPH and tetramer stability is maintained. Possible roles in catalysis for the chymotrypsin sensitive loop and for the low pKa Tyr residues are discussed.  (+info)

The role of surface proteins in cell proliferation as studied with thrombin and other proteases. (55/2760)

This communication explores the capacity of different proteases to stimulate DNA synthesis in resting chick embryo fibroblasts and to cause the removal of cell membrane proteins previosly postulated as important in the regulation of growth and division of cells. Thrombin, a highly specific protease and a known mitogen, was incubated with chick embryo fibroblasts, and analysis was made of the cell membrane proteins. Of particular interest were a protein of molecular weight 250,000, which is known to be readily removed by the action of trypsin and is not present in most transformed cells, and two other proteins, which are reduced in amount in transformed as compared to confluent resting cell cultures. None of these three proteins was removed by thrombin when the latter was added to confluent cells in concentrations sufficient to cause significant increase in DNA synthesis twelve hours after stimulation by the protease. The presence or absence of these proteins in the membranes of confluent resting or transformed cells of chick embryo fibroblasts does not seem to be directly related to the process of regulation of DNA synthesis and cellular division.  (+info)

Effects of amino acid replacements around the reactive site of chicken ovomucoid domain 3 on the inhibitory activity toward chymotrypsin and trypsin. (56/2760)

We have previously shown that replacing the P1-site residue (Ala) of chicken ovomucoid domain 3 (OMCHI3) with a Met or Lys results in the acquisition of inhibitory activity toward chymotrypsin or trypsin, respectively. However, the inhibitory activities thus induced are not strong. In the present study, we introduced additional amino acid replacements around the reactive site to try to make the P1-site mutants more effective inhibitors of chymotrypsin or trypsin. The amino acid replacement Asp-->Tyr at the P2' site of OMCHI3(P1Met) resulted in conversion to a 35000-fold more effective inhibitor of chymotrypsin with an inhibitor constant (K(i)) of 1. 17x10(-11) M. The K(i) value of OMCHI3(P1Met, P2'Ala) indicated that the effect on the interaction with chymotrypsin of removing a negative charge from the P2' site was greater than that of introducing an aromatic ring. Similarly, enhanced inhibition of trypsin was observed when the Asp-->Tyr replacement was introduced into the P2' site of OMCHI3(P1Lys). Two additional replacements, Asp-->Ala at the P4 site and Arg-->Ala at the P3' site, made the mutant a more effective inhibitor of trypsin with a K(i) value of 1. 44x10(-9) M. By contrast, Arg-->Ala replacement at the P3' site of OMCHI3(P1Met, P2'Tyr) resulted in a greatly reduced inhibition of chymotrypsin, and Asp-->Ala replacement at the P4 site produced only a small change when compared with a natural variant of OMCHI3. These results clearly indicate that not only the P1-site residue but also the characteristics, particularly the electrostatic properties, of the amino acid residues around the reactive site of the protease inhibitor determine the strength of its interactions with proteases. Furthermore, amino acids with different characteristics are required around the reactive site for strong inhibition of chymotrypsin and trypsin.  (+info)