Exclusion of the gene for human cartilage intermediate layer protein in currently mapped calcium pyrophosphate dihydrate deposition syndromes. (41/1003)

OBJECTIVE: To map the gene for human cartilage intermediate layer protein (CILP) in order to assess its involvement in some familial forms of calcium pyrophosphate dihydrate (CPPD) deposition disease. METHODS: A radiation hybrid panel was analyzed for chromosomal assignment of the CILP gene within a 1-cM limit of resolution. The location of the gene for CILP was confirmed to reside at the observed radiation hybrid locus by fluorescence in situ hybridization. RESULTS: The human CILP gene resides at chromosome 15q21. CONCLUSION: This map location definitively excludes mutations in the CILP gene as the cause of certain familial forms of CPPD deposition disease that have been genetically mapped to chromosomes 8q and 5p.  (+info)

TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. (42/1003)

Anaplastic large cell lymphoma (ALCL) is associated with the t(2;5)(p23;q35), which generates the NPM-ALK fusion gene encoding an 80-kD protein. Several studies have suggested that genes other than NPM may be fused to the ALK gene. Here we have identified TRK-fused gene (TFG) as a new ALK partner in 2 ALCL, 1 of which exhibited a t(2;3)(p23;q21). In these cases, TFG was involved in 2 different fusion genes, TFG-ALK(S) and TFG-ALK(L), coding respectively 85-kD and 97-kD chimeric proteins. The ALK breakpoint in these translocations was the same as in the classic t(2;5) translocation. These 2 proteins were both active in an in vitro tyrosine kinase assay showing that the new cloned cDNA sequences are translated into chimeric proteins with functional activity. These findings indicate that TFG can provide an alternative to NPM as a fusion partner responsible for activation of the ALK and the pathogenesis of ALCL.  (+info)

Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. (43/1003)

BACKGROUND: 10% of sporadic colorectal cancers are characterised by a low level of microsatellite instability (MSI-L). These are not thought to differ substantially from microsatelite-stable (MSS) cancers, but MSI-L and MSS cancers are distinguished clinicopathologically and in their spectrum of genetic alterations from cancers showing high level microsatellite instability (MSI-H). AIMS: To study the distribution of molecular alterations in a series of colorectal cancers stratified by DNA microsatellite instability. METHODS: A subset of an unselected series of colorectal cancers was grouped by the finding of DNA MSI at 0 loci (MSS) (n = 51), 1-2 loci (MSI-L) (n = 38) and 3-6 loci (MSI-H) (n = 25). The frequency of K-ras mutation, loss of heterozygosity (LOH) at 5q, 17p and 18q, and patterns of p53 and beta catenin immunohistochemistry was determined in the three groups. RESULTS: MSI-H cancers had a low frequency of K-ras mutation (7%), LOH on chromosomes 5q (0%), 17p (0%) and 18q (12.5%), and a normal pattern of immunostaining for p53 and beta catenin. MSI-L cancers differed from MSS cancers in terms of a higher frequency of K-ras mutation (54% v 27%) (p = 0.01) and lower frequency of 5q LOH (23% v 48%) (p = 0.047). Whereas aberrant beta catenin expression and 5q LOH were concordant (both present or both absent) in 57% of MSS cancers, concordance was observed in only 20% of MSI-L cancers (p = 0.01). CONCLUSIONS: MSI-L colorectal cancers are distinct from both MSI-H and MSS cancers. This subset combines features of the suppressor and mutator pathways, may be more dependent on K-ras than on the APC gene in the early stages of neoplastic evolution, and a proportion may be related histogenetically to the serrated (hyperplastic) polyp.  (+info)

Significant evidence for linkage of febrile seizures to chromosome 5q14-q15. (44/1003)

Febrile seizures (FSs) represent the most common form of childhood seizure. In the Japanese population, the incidence rate is as high as 7%. It has been recognized that there is a significant genetic component for susceptibility to this type of seizure. Two putative FS loci, FEB1 (chromosome 8q13-q21) and FEB2 (chromosome 19p), have been mapped. Furthermore, a mutation in the voltage-gated sodium (Na(+))-channel beta1 subunit gene ( SCN1B ) at chromosome 19q13.1 was identified in a family with a clinical subset, termed generalized epilepsy with febrile seizures plus (GEFS(+)). These loci are linked to some large families. In this study, we conducted a genome-wide linkage search for FS in one large family with subsequent linkage confirmation in 39 nuclear families. Significant linkage was found at D5S644 by multipoint non-parametric analysis using GENEHUNTER ( P = 5.4 x 10(-6)). Estimated lambda(s)at D5S644 was 2.5 according to maximum likelihood analysis. Significant linkage disequilibria with FS were observed at the markers D5S644, D5S652 and D5S2079 in 47 families by transmission disequilibrium tests. These findings indicate that there is a gene on chromosome 5q14-q15 that confers susceptibility to FSs and we call this gene FEB4.  (+info)

AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). (45/1003)

Infant acute lymphoblastic leukemia (ALL) with MLL gene rearrangements is characterized by early pre-B phenotype (CD10(-)/CD19(+)) and poor treatment outcome. The t(4;11), creating MLL-AF4 chimeric transcripts, is the predominant 11q23 chromosome translocation in infant ALL and is associated with extremely poor prognosis as compared with other 11q23 translocations. We analyzed an infant early preB ALL with ins(5;11)(q31;q13q23) and identified the AF5q31 gene on chromosome 5q31 as a fusion partner of the MLL gene. The AF5q31 gene, which encoded a protein of 1,163 aa, was located in the vicinity of the cytokine cluster region of chromosome 5q31 and contained at least 16 exons. The AF5q31 gene was expressed in fetal heart, lung, and brain at relatively high levels and fetal liver at a low level, but the expression in these tissues decreased in adults. The AF5q31 protein was homologous to AF4-related proteins, including AF4, LAF4, and FMR2. The AF5q31 and AF4 proteins had three homologous regions, including the transactivation domain of AF4, and the breakpoint of AF5q31 was located within the region homologous to the transactivation domain of AF4. Furthermore, the clinical features of this patient with the MLL-AF5q31 fusion transcript, characterized by the early pre-B phenotype (CD10(-)/CD19(+)) and poor outcome, were similar to those of patients having MLL-AF4 chimeric transcripts. These findings suggest that AF5q31 and AF4 might define a new family particularly involved in the pathogenesis of 11q23-associated-ALL.  (+info)

The importance of genetic influences in asthma. (46/1003)

Asthma is a complex genetic disorder in which the mode of inheritance is not known. Many segregation studies suggest that a major gene could be involved in asthma, but until now different genetic models have been obtained. Twin studies, too, have shown evidence for genetic influences in asthma, but have also revealed substantial evidence for environmental influences, in which nonshared environmental influences appeared to be important. Linkage, association studies and genome-wide screening suggest that multiple genes are involved in the pathogenesis of asthma. At least four regions of the human genome, chromosomes 5q31-33, 6p21.3, 11q13 and 12q14.3-24.1, contain genes consistently found to be associated with asthma and associated phenotypes. Not only genes associated with asthma but also genes which are involved in the development and outcome of asthma will be found in the future. This will probably provide greater insight into the identification of individuals at risk of asthma and early prevention and greater understanding for guiding therapeutic intervention in asthma. Exchange of information between researchers involved in the genetics of asthma is important because of mandatory agreement on phenotypes and analytical approaches. Genetics will contribute to the a better understanding and management of asthma in the future.  (+info)

Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31-q33: exclusion of candidate genes including EGR1. (47/1003)

Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23-q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31-q33. Three of these seventeen families are probably linked to this locus, indicating that the 5q locus accounts for about 20% of demyelinating ARCMT. Several candidate genes in the region were excluded by their position on the contig and/or by sequence analysis. The most obvious candidate gene, EGR1, expressed specifically in Schwann cells, mapped outside of the candidate region and no base changes were detected in two families by sequencing of the entire coding sequence.  (+info)

Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). (48/1003)

Autosomal Dominant Polycystic Kidney Disease (ADPKD), a common inherited disease leading to progressive renal failure, can be caused by a mutation in either the PKD1 or PKD2 gene. Both genes encode for putative transmembrane proteins, polycystin-1 and polycystin-2, which show significant homology to each other and are believed to interact at their carboxy termini. To identify genes that code for related proteins we searched for homologous sequences in several databases and identified one partial cDNA and two genomic sequences with significant homology to both polycystin-1 and - 2. Further analysis revealed one novel gene, PKD2L2, located on chromosome band 5q31, and two recently described genes, PKD2L and PKDREJ, located on chromosome bands 10q31 and 22q13.3, respectively. PKD2L2 and PKD2L, which encode proteins of 613 and 805 amino acids, are approximately 65% similar to polycystin-2. The third gene, PKDREJ, encodes a putative 2253 amino acid protein and shows about 35% similarity to both polycystin-1 and polycystin-2. For all the genes expression was found in testis. Additional expression of PKD2L was observed in retina, brain, liver and spleen by RT-PCR. Analyses of five ADPKD families without clear linkage to either the PKD1 or PKD2 locus showed no linkage to any of the novel loci, excluding these genes as the cause of ADPKD in these families. Although these genes may not be involved in renal cystic diseases, their striking homology to PKD2 and PKD1 implies similar roles and may contribute to elucidating the function of both polycystin-1 and polycystin-2.  (+info)