Duplications on human chromosome 22 reveal a novel Ret Finger Protein-like gene family with sense and endogenous antisense transcripts. (25/1012)

Analysis of 600 kb of sequence encompassing the beta-prime adaptin (BAM22) gene on human chromosome 22 revealed intrachromosomal duplications within 22q12-13 resulting in three active RFPL genes, two RFPL pseudogenes, and two pseudogenes of BAM22. The genomic sequence of BAM22vartheta1 shows a remarkable similarity to that of BAM22. The cDNA sequence comparison of RFPL1, RFPL2, and RFPL3 showed 95%-96% identity between the genes, which were most similar to the Ret Finger Protein gene from human chromosome 6. The sense RFPL transcripts encode proteins with the tripartite structure, composed of RING finger, coiled-coil, and B30-2 domains, which are characteristic of the RING-B30 family. Each of these domains are thought to mediate protein-protein interactions by promoting homo- or heterodimerization. The MID1 gene on Xp22 is also a member of the RING-B30 family and is mutated in Opitz syndrome (OS). The autosomal dominant form of OS shows linkage to 22q11-q12. We detected a polymorphic protein-truncating allele of RFPL1 in 8% of the population, which was not associated with the OS phenotype. We identified 6-kb and 1.2-kb noncoding antisense mRNAs of RFPL1S and RFPL3S antisense genes, respectively. The RFPL1S and RFPL3S genes cover substantial portions of their sense counterparts, which suggests that the function of RFPL1S and RFPL3S is a post-transcriptional regulation of the sense RFPL genes. We illustrate the role of intrachromosomal duplications in the generation of RFPL genes, which were created by a series of duplications and share an ancestor with the RING-B30 domain containing genes from the major histocompatibility complex region on human chromosome 6.  (+info)

22q11 deletion syndrome: a genetic subtype of schizophrenia. (26/1012)

Schizophrenia is likely to be caused by several susceptibility genes and may have environmental factors that interact with susceptibility genes and/or nongenetic causes. Recent evidence supports the likelihood that 22q11 Deletion Syndrome (22qDS) represents an identifiable genetic subtype of schizophrenia. 22qDS is an under-recognized genetic syndrome associated with microdeletions on chromosome 22 and a variable expression that often includes mild congenital dysmorphic features, hypernasal speech, and learning difficulties. Initial evidence indicates that a minority of patients with schizophrenia (approximately 2%) may have 22qDS and that prevalence may be somewhat higher in subpopulations with developmental delay. This paper proposes clinical criteria (including facial features, learning disabilities, hypernasal speech, congenital heart defects and other congenital anomalies) to aid in identifying patients with schizophrenia who may have this subtype and outlines features that may increase the index of suspicion for this syndrome. Although no specific causal gene or genes have yet been identified in the deletion region, 22qDS may represent a more homogeneous subtype of schizophrenia. This subtype may serve as a model for neurodevelopmental origins of schizophrenia that could aid in delineating etiologic and pathogenetic mechanisms.  (+info)

Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. (27/1012)

In response to DNA damage, mammalian cells adopt checkpoint regulation, by phosphorylation and stabilization of p53, to delay cell cycle progression. However, most cancer cells that lack functional p53 retain an unknown checkpoint mechanism(s) by which cells are arrested at the G(2)/M phase. Here we demonstrate that a human homolog of Cds1/Rad53 kinase (hCds1) is rapidly phosphorylated and activated in response to DNA damage not only in normal cells but in cancer cells lacking functional p53. A survey of various cancer cell lines revealed that the expression level of hCds1 mRNA is inversely related to the presence of functional p53. In addition, transfection of normal human fibroblasts with SV40 T antigen or human papilloma viruses E6 or E7 causes a marked induction of hCds1 mRNA, and the introduction of functional p53 into SV40 T antigen- and E6-, but not E7-, transfected cells decreases the hCds1 level, suggesting that p53 negatively regulates the expression of hCds1. In cells without functional ataxia telangiectasia mutated (ATM) protein, phosphorylation and activation of hCds1 were observed in response to DNA damage induced by UV but not by ionizing irradiation. These results suggest that hCds1 is activated through an ATM-dependent as well as -independent pathway and that it may complement the function of p53 in DNA damage checkpoints in mammalian cells.  (+info)

cDNA cloning, genomic structure and chromosomal localization of the human BUP-1 gene encoding beta-ureidopropionase. (28/1012)

A full-length cDNA clone encoding human beta-ureidopropionase was isolated. A 1152-nucleotide open reading frame which corresponds to a protein of 384 amino acids with a calculated molecular weight of 43 inverted question mark omitted inverted question mark158 Da, surrounded by a 5'-untranslated region of 61 nucleotides and a 3'-untranslated region of 277 nucleotides was identified. The protein showed 91% similarity with the translation product of the rat beta-ureidopropionase cDNA. Expression of the human cDNA in an Escherichia coli and eukaryotic COS-7 expression system revealed a very high beta-ureidopropionase enzymatic activity, thus confirming the identity of the cDNA. Since human EST libraries from brain, liver, kidney and heart contained partial beta-ureidopropionase cDNAs, the enzyme seems to be expressed in these tissues, in agreement with the expression profile of this enzyme in rat. Using the human cDNA as a probe a genomic P1 clone could be isolated containing the complete human beta-ureidopropionase gene. The gene consist of 11 exons spanning approximately 20 kB of genomic DNA. Fluorescence in situ hydridization localized the human beta-ureidopropionase gene to 22q11.2.  (+info)

Deletion of 150 kb in the minimal DiGeorge/velocardiofacial syndrome critical region in mouse. (29/1012)

Deletions or rearrangements of human chromosome 22q11 lead to a variety of related clinical syndromes such as DiGeorge syndrome (DGS) and velo--cardiofacial syndrome (VCFS). In addition, patients with 22q11 deletions have an increased incidence of schizophrenia and several studies have mapped susceptibility loci for schizophrenia to this region. Human molecular genetic studies have so far failed to identify the crucial genes or disruption mechanisms that result in these disorders. We have used gene targeting in the mouse to delete a defined region within the conserved DGS critical region (DGCR) on mouse chromosome 16 to prospectively investigate the role of the mouse DGCR in 22q11 syndromes. The deletion spans a conserved portion ( approximately 150 kb) of the proximal region of the DGCR, containing at least seven genes ( Znf74l, Idd, Tsk1, Tsk2, Es2, Gscl and Ctp ). Mice heterozygous for this deletion display no findings of DGS/VCFS in either inbred or mixed backgrounds. However, heterozygous mice display an increase in prepulse inhibition of the startle response, a manifestation of sensorimotor gating that is reduced in humans with schizophrenia. Homozygous deleted mice die soon after implantation, demonstrating that the deleted region contains genes essential for early post-implantation embryonic development. These results suggest that heterozygous deletion of this portion of the DGCR is sufficient for sensorimotor gating abnormalities, but not sufficient to produce the common features of DGS/VCFS in the mouse.  (+info)

Longitudinal analysis of lymphocyte function and numbers in the first year of life in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). (30/1012)

Chromosome 22q11.2 deletion syndrome is a common syndrome typically consisting of variable cardiac defects, hypoparathyroidism, developmental delay, and immunodeficiency. The hemizygous deletion has variable effects on the immune system even within the same kindred, and the extent of the immunodeficiency is difficult to predict. Some patients have shown improvement over time; however, this is the first prospective longitudinal study of the dynamic nature of the immunodeficiency. Nineteen patients were studied prospectively between 1994 and 1997. The results of the newborn immunologic studies in the chromosome 22q11.2 deletion group were significantly different from those of a group of newborns with cardiac disease due to other causes. Peripheral blood T-cell numbers were decreased in the chromosome 22q11.2 deletion group, although T-cell function was largely preserved. The group as a whole demonstrated few changes in the first year of life, but a subset of patients with markedly diminished T-cell numbers did demonstrate improvement. Therefore, improvement in peripheral blood T-cell counts is variable in chromosome 22q11.2 deletion syndrome. The patients with the lowest T-cell counts improved the most in the first year of life.  (+info)

Detection of EWS chimeric transcripts by nested RT-PCR to allow reinfusion of uncontaminated peripheral blood stem cells in high-risk Ewing's tumor in childhood. (31/1012)

BACKGROUND AND OBJECTIVE: Ewing's tumors (ET) are primary malignancies of bone and soft tissues characterized in at least 96% of cases by specific fusion transcripts originating from recurrent chromosomal translocations. Clinical protocols for high-risk metastatic ETs include high-dose radiation/chemotherapy followed by autologous peripheral blood stem cell (PBSC) reinfusion. We used nested reverse transcriptase polymerase chain reaction (RT-PCR) to search for the presence of ET-specific transcripts in PBSC collections from patients with high-risk ET in order to collect harvests free from neoplastic cells but still sufficient to obtain early stable engraftment. DESIGN AND METHODS: Thirty-seven harvest samples from 15 ET patients treated with mobilizing chemotherapy were analyzed. Nested RT-PCR was performed to detect ET-specific transcripts in RNA extracted from the PBSC collections. RESULTS: A total of 30 harvests was performed. On average, 2 harvests (range 1-4) were sufficient to collect the minimum required number of mononuclear cells (2.5  (+info)

Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. (32/1012)

The hSNF5/INI1 gene which encodes a member of the SWI/SNF chromatin ATP-dependent remodeling complex, is a new tumor suppressor gene localized on chromosome 22q11.2 and recently shown to be mutated in malignant rhabdoid tumors. We have searched for hSNF5/INI1 mutations in 229 tumors of various origins using a screening method based on denaturing high-performance liquid chromatography. A total of 31 homozygous deletions and 36 point alterations were identified. Point mutations were scattered along the coding sequence and included 15 nonsense, 15 frameshift, three splice site, two missense and one editing mutations. Mutations were retrieved in most rhabdoid tumors, whatever their sites of occurrence, indicating the common pathogenetic origin of these tumors. Recurrent hSNF5/INI1 alterations were also observed in choroid plexus carcinomas and in a subset of central primitive neuroectodermal tumors (cPNETs) and medulloblastomas. In contrast, hSNF5/INI1 point mutations were not detected in breast cancers, Wilms' tumors, gliomas, ependymomas, sarcomas and other tumor types, even though most analyzed cases harbored loss of heterozygosity at 22q11.2 loci. These results suggest that rhabdoid tumors, choroid plexus carcinomas and a subset of medulloblastomas and cPNETs share common pathways of oncogenesis related to hSNF5/INI1 alteration and that hSNF5/INI1 mutations define a genetically homogeneous family of highly aggressive cancers mainly occurring in young children and frequently, but not always, exhibiting a rhabdoid phenotype.  (+info)