Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. (33/1666)

BACKGROUND: Gain of genetic material from chromosome arm 17q (gain of segment 17q21-qter) is the most frequent cytogenetic abnormality of neuroblastoma cells. This gain has been associated with advanced disease, patients who are > or =1 year old, deletion of chromosome arm 1p, and amplification of the N-myc oncogene, all of which predict an adverse outcome. We investigated these associations and evaluated the prognostic importance of the status of chromosome 17. METHODS: We compiled molecular cytogenetic analyses of chromosome 17 in primary neuroblastomas in 313 patients at six European centers. Clinical and survival information were collected, along with data on 1p, N-myc, and ploidy. RESULTS: Unbalanced gain of segment 17q21-qter was found in 53.7 percent of the tumors, whereas the chromosome was normal in 46.3 percent. The gain of 17q was characteristic of advanced tumors and of tumors in children > or =1 year of age and was strongly associated with the deletion of 1p and amplification of N-myc. No tumor showed amplification of N-myc in the absence of either deletion of 1p or gain of 17q. Gain of 17q was a significant predictive factor for adverse outcome in univariate analysis. Among the patients with this abnormality, overall survival at five years was 30.6 percent (95 percent confidence interval, 21 to 40 percent), as compared with 86.0 percent (95 percent confidence interval, 78 to 91 percent) among those with normal 17q status. in multivariate analysis, gain of 17q was the most powerful prognostic factor, followed by the presence of stage 4 disease and deletion of 1p (hazard ratios, 3.4, 2.3, and 1.9, respectively). CONCLUSIONS: Gain of chromosome segment 17q21-qter is an important prognostic factor in children with neuroblastoma.  (+info)

t(1;2)(q21;p23) and t(2;3)(p23;q21): two novel variant translocations of the t(2;5)(p23;q35) in anaplastic large cell lymphoma. (34/1666)

Cytogenetic investigations in two cases of anaplastic large cell lymphoma (ALCL) showed novel variants of the classical (2;5)(p23;q35) translocation, namely a t(1;2)(q21;p23) and a t(2;3)(p23;q21). The tumor cells in both cases gave positive immunohistochemical labeling for ALK protein (with both monoclonal and polyclonal antibodies), demonstrating that these translocations induce aberrant expression of this kinase and suggesting that genes other than NPM can activate the ALK gene in ALCL. These two cases were shown by an in vitro kinase assay to express ALK kinases (104 kD and 97 kD, respectively), which differed in size from the classical NPM-ALK fusion product (80 kD). Moreover, ALK expression was confined to the cytoplasm of the tumor cells in each case, supporting the hypothesis that the observed nuclear localization of NPM-ALK in classical ALCL is not the site of oncogenic activity of the ALK kinase.  (+info)

Human epidermal differentiation complex in a single 2.5 Mbp long continuum of overlapping DNA cloned in bacteria integrating physical and transcript maps. (35/1666)

Terminal differentiation of keratinocytes involves the sequential expression of several major proteins which can be identified in distinct cellular layers within the mammalian epidermis and are characteristic for the maturation state of the keratinocyte. Many of the corresponding genes are clustered in one specific human chromosomal region 1q21. It is rare in the genome to find in such close proximity the genes belonging to at least three structurally different families, yet sharing spatial and temporal expression specificity, as well as interdependent functional features. This DNA segment, termed the epidermal differentiation complex, contains 27 genes, 14 of which are specifically expressed during calcium-dependent terminal differentiation of keratinocytes (the majority being structural protein precursors of the cornified envelope) and the other 13 belong to the S100 family of calcium binding proteins with possible signal transduction roles in the differentiation of epidermis and other tissues. In order to provide a bacterial clone resource that will enable further studies of genomic structure, transcriptional regulation, function and evolution of the epidermal differentiation complex, as well as the identification of novel genes, we have constructed a single 2.45 Mbp long continuum of genomic DNA cloned as 45 p1 artificial chromosomes, three bacterial artificial chromosomes, and 34 cosmid clones. The map encompasses all of the 27 genes so far assigned to the epidermal differentiation complex, and integrates the physical localization of these genes at a high resolution on a complete NotI and SalI, and a partial EcoRI restriction map. This map will be the starting resource for the large-scale genomic sequencing of this region by The Sanger Center, Hinxton, U.K.  (+info)

Rearrangements of chromosome band 1p36 in non-Hodgkin's lymphoma. (36/1666)

We studied 850 consecutive cases of histologically ascertained pretreatment non-Hodgkin's lymphoma with cytogenetically abnormal clones. The diagnostic karyotypes revealed that 12% of these cases exhibited structural rearrangements involving chromosome band 1p36. Here, we describe the karyotypes of 53 cases containing a 1p36 rearrangement [often involving translocations of unknown material and presented as add(1)(p36)]. We used fluorescence in situ hybridization to determine the origin of the translocation partners. We report three different recurrent translocations involving 1p36. These include der(1)t(1;1)(p36;q21) (three cases), der(1)t(1;1)(p36;q25) (three cases), and der(1)t(1;9)(p36;q13) (four cases). Using cytogenetic and fluorescence in situ hybridization analyses, we have resolved the translocation partners in 31 cases. Rearrangements of band 1p36 were found among different histopathological subtypes. Alterations of 1p36 never occurred as a sole abnormality, and in 42 of 53 cases, alterations of the band 14q32 were observed. The t(14;18)(q32;q21) translocation was present in 35 cases. The significantly high occurrence of 1p36 breakpoint in structural rearrangements and its involvement in recurrent translocations suggest that the region is bearing gene(s) that are important in lymphomagenesis. Our study also showed that cytogenetically evident deletions were frequent in chromosome 1p, almost always involving the p36 region, whereas duplications were rare and never encompassed the p36 region. Chromosome band 1p36 harbors many candidate tumor suppressor genes, and we propose that one or more of these genes might be deleted or functionally disrupted as a molecular consequence of the rearrangements, thus contributing to lymphomagenesis.  (+info)

Molecular cloning and functional expression of the human Golgi UDP-N-acetylglucosamine transporter. (37/1666)

We have cloned the human UDP-N-acetylglucosamine (UDP-GlcNAc) transporter cDNA, which was recognized through a homology search in the expressed sequence tags database (dbEST) based on its similarity to the human UDP-galactose transporter. The chromosomal location of the UDP-GlcNAc transporter gene was assigned to chromosome 1p21 by fluorescence in situ hybridization (FISH). The transporter was expressed ubiquitously in every tissue so far examined. Expression of the transporter cDNA in CHO-K1 cells in its native and in a C-terminally HA-tagged form indicated that the human UDP-GlcNAc transporter was localized in the Golgi apparatus. The membrane vesicles prepared from yeast cells expressing the cDNA product exhibited UDP-GlcNAc-specific transporting activity. Comparison among UDP-galactose, CMP-sialic acid, and UDP-GlcNAc transporters from several organisms enabled us to identify residues highly conserved among the transporters and residues specific for each group of transporters.  (+info)

NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15). (38/1666)

The nucleoporin gene NUP98 was found fused to the HOXA9, HOXD13, or DDX10 genes in human acute myelogenous leukemia (AML) with chromosome translocations t(7;11)(p15;p15), t(2;11)(q35;p15), or inv(11)(p15;q22), respectively. We report here the fusion between the NUP98 gene and another homeobox gene PMX1 in a case of human AML with a t(1;11)(q23;p15) translocation. The chimeric NUP98-PMX1 transcript was detected; however, there was no reciprocal PMX1-NUP98 fusion transcript. Like the NUP98-HOXA9 fusion, NUP98 and PMX1 were fused in frame and the N-terminal GLFG-rich docking region of the NUP98 and the PMX1 homeodomain were conserved in the NUP98-PMX1 fusion, suggesting that PMX1 homeodomain expression is upregulated and that the fusion protein may act as an oncogenic transcription factor. The fusion to NUP98 results in the addition of the strong transcriptional activation domain located in the N-terminal region of NUP98 to PMX1. These findings suggest that constitutive expression and alteration of the transcriptional activity of the PMX1 homeodomain protein may be critical for myeloid leukemogenesis.  (+info)

Use of a human minichromosome as a cloning and expression vector for mammalian cells. (39/1666)

A natural human minichromosome (MC1) derived from human chromosome 1 was shown to be linear and to have a size of 5.5 Mb. Human IL-2 cDNA and the neo gene were co-transfected into a MC1-containing human-CHO hybrid cell line. Integration of the foreign genes was directed to the pericentromeric region of MC1 by co-transfection of chromosome 1-specific satellite 2 DNA. A number of G418-resistant transfectants were obtained and expression of IL-2 was determined. FISH analysis demonstrated co-localization in the minichromosome of the IL-2 gene and of the satellite 2 DNA. An IL-2-producing clone was used in cell fusion experiments with IL-2-dependent murine CTLL cells to generate CTLL-human hybrids containing the modified minichromosome (MC1- IL2 ). The hybrids were able to grow in medium lacking IL-2 for 17 mean population doublings (MPD), indicating that expression of the cytokine was sufficient to relieve the IL-2 dependence of CTLL proliferation. Endogenous IL-2 production delayed the onset of apoptosis in the IL-2-dependent CTLL cells. Mitotic stability was shown to be 100% in the human-CHO hybrids and 97% per MPD in CTLL cells. These results demonstrate that a natural human minichromosome can be utilized as a cloning and expression vector for mammalian cells and that the MC1 minichromosome can be engineered to deliver IL-2 to two types of cells, fibroblasts and lymphocytes.  (+info)

AlphaIFN-induced hematologic and cytogenetic remission in chronic eosinophilic leukemia with t(1;5). (40/1666)

Chronic eosinophilic leukemia (CEL) is a myeloproliferative disease characterized by excessive eosinophilic proliferation with clonal cytogenetic abnormalities. The most frequent cytogenetic abnormality is a break in the q 31-35 region of chromosome 5, where genes encoding for IL-3, IL-5 and GM-CSF (all cytokines involved in eosinophilopoiesis) are located. We report the case of a patient with CEL with t(1;5) (q23;q31), who obtained complete hematologic and major cytogenetic response after two years of alpha-interferon (alpha-IFN) therapy. Two other cases of complete response to alpha-IFN are reported in the literature. A trial with alpha-IFN could be considered as front line treatment in this rare disease.  (+info)